Aquaculture jeopardizes migrating Oriental storks

The Oriental stork (*Ciconia boyciana*), once the most common bird of the Far East, is now listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and classified as Endangered on the International Union for Conservation of Nature’s (IUCN’s) Red List (1, 2). Over the past few decades, illegal poaching, habitat loss, and environmental pollution have caused a decline in the Oriental stork population in its Northeast Asian breeding grounds (3). Fewer than 3000 individuals remained worldwide by 2018 (2). The Oriental stork now faces a severe survival threat at migratory stopover sites in China’s Bohai coastal region, where human disturbances drive habitat degradation (4).

The Qilihai and Caofeidian wetland reserves, located north of the Bohai Bay, are the most important stopover sites for the Oriental stork (5). More than 2000 individuals refuel in these wetlands during their fall migration (6). However, large areas of these reserves (including about 80 to 90% of the Caofeidian wetland) have been leased to aquacultural farmers to create fishponds (7). The farmers dislike foraging storks and often try to scare them away with fire-crackers (4). For aquaculture, wetlands are maintained at a relatively high water level, which makes foraging difficult for storks and prevents them from finding enough food (4). As a result, the storks relocate to private fishponds, where they face an increased risk of poisoning and poaching. In 2019, 19 storks were poisoned in the Qilihai and Caofeidian wetlands (8).

The Oriental stork has been categorized as a terrestrial species under state protection (with a beneficial, economic, or scientific value) since 2000 (9), but the species’ extremely limited population size indicates that this designation is not enough. To better protect the Oriental stork, the Chinese government is currently updating the special state protection list and changing the protection of this bird to the highest first-class level (10). In addition, immediate habitat restoration is required. Fishponds in protected areas must be restored to natural wetlands to create favorable living conditions and reverse population decline. Local governments should rapidly formulate eco-compensation measures and publicize wildlife protection to mediate human-bird conflicts. Only by taking action to protect this species and its habitat can we prevent its looming extinction.

Indigenous rights to Patagonia’s Guafo island

In September, private investors put 20,000-ha Guafo island up for sale for US $20 million (7). The island, located in northern Chilean Patagonia, is a stronghold of unique biodiversity (2, 3) and a biocultural heritage site for Patagonia Indigenous groups and the country (4). The owners bought the island a decade...
ago with plans to conduct coal mining operations (1), but after Chile made a climate change commitment to become carbon neutral by 2050 (5), the difficulty obtaining mining permits made them rethink their investment. The Chilean government should protect these valuable ecosystems by deeding the island to the Indigenous people who claim it.

The challenges facing Guafú island are emblematic of environmental problems throughout Patagonia. A growing exotic salmon aquaculture industry has brought about environmental degradation (6). Climate change–induced drought has led to harmful algal blooms (6, 7) that may have contributed to the stranding of hundreds of endangered Sei whales (8). Terrestrial ecosystems face increasing tensions from tourist developments, a growing human population, peat bog degradation, exotic species invasion, and climate change (6), which threatens glacial freshwater reserves (9) and increases the likelihood of fires (6).

Disrespecting Indigenous peoples’ heritage in Patagonia threatens the region’s biodiversity. Degrading the capacity of carbon sequestration in forest soils, peatbogs, and kelp forests (6) and disrupting the carbon sequestration processes fostered by large whales and other marine vertebrates (10) will initiate a perfect storm of increasing warming and ecosystem degradation with global consequences. It is incumbent upon the Chilean government to set an example for Patagonian policy by protecting Guafú island and its surrounding seascapes, requiring that the salmon industry withdraw operations from protected waters, and giving Indigenous people the rights to their ancestral lands. In 2008, Chile passed the Mapuche-Lafkenche Marine and Coastal Areas for Indigenous Peoples (MCAIP) law (11). The legislation enables the allocation and administration of coastal marine areas to Indigenous communities, who can ensure the sustainability and conservation of marine resources and ecosystems. There is already an MCAIP claim for Guafú island by Indigenous communities from nearby Chiloé island (12), the “Wafú Wapi ancestral land for conservation.” The Chilean government should support this claim.

Pablo A. Marquet1,2*, Juan Carlos Castilla1, Aurora Gaxiolla3, Rodrigo Huckle-Gaete3, Alfredo Pena-Vega4

1Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile. 2Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile. 3Programa Austral Patagónico, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile. 4Ecole des Hautes Etudes en Sciences Sociales/ Centre National de la Recherche Scientifique Institut Interdisciplinaire d’Anthropologie du Contemporain, Paris, France.

*Corresponding author. Email: pmarquet@bio.puc.cl

REFERENCES AND NOTES

5. Climate Action Tracker, Chile, Pledges and Targets (2020); https://climateactiontracker.org/countries/chile/pledges-and-targets/.
12. F. Aras et al., Coast. Manage. 48, 289 (2020).

Fishes belong to the very fishery these marshes support (9).

Fisheries rely on threatened salt marshes

Salt marsh ecosystems and the seascapes in which they are embedded serve as critical habitats for species harvested by fisheries (1), which provide food and economic security for hundreds of millions of people (2). Historical marsh losses coupled with increasing pressures from coastal development and climate change place these intertidal ecosystems and surrounding uplands under growing threat (3). Preventing further losses of salt marshes and associated fisheries production will require greater public awareness and difficult choices in coastal policy and management, underpinned by greater understanding of marsh function.

Quantifying the value of salt marsh habitat to fisheries production is challenging. Many fisheries species feed and shelter in the salt marsh only as juveniles, and it is difficult to assess the marsh’s effect once they have moved to a new location (1). It is also unclear how much landscape fragmentation under sea level rise will affect fisheries; it may boost fishery production, at least temporarily (4), but it could also disrupt food web processes that support fisheries (5).

Projections of marsh expansion offer hope (6) but are largely dependent on changes in coastal watershed management. For instance, human development may prevent marshes from migrating upward with sea level rise and thus lead to marsh drowning (7). Adequate sediment supply is also essential for marsh resilience, but many coastal areas in the world are sediment-starved (8).

Much effort has been made to restore natural riverine flow and other sources of sediment delivery into marshes, although such efforts may have negative impacts on the very fisheries these marshes support (9).

To design effective policies for salt marsh restoration and conservation that protect fisheries production, we need to better understand the role of salt marshes. Researchers should continue to explore the fundamental linkages between salt marshes and fisheries (10), the marsh habitat value within the context of the interconnected and increasingly urbanized mosaic of coastal ecosystems, and the value of salt marshes created by upland transgression and active engineering. Restoration and conservation planning must take a long-term view that specifically recognizes sea level rise and its interaction with other anthropogenic stressors.

Ronald Baker15, Matthew D. Taylor2, Kenneth W. Able1, Michael W. Beck1, Just Cebrian3, Denise D. Colombano4, Rod M. Connolly5, Carolyn Currin6, Linda A. Deegan7, Ilka C. Feller8, Ben L. Gilby7, Matthew E. Kimball9, Thomas J. Minello10, Lawrence P. Rosas10,11 Charles Simenstad10, R. Eugene Turner12, Nathan J. Waltham12, Michael P. Weinstein13, Shelby L. Ziegler12, Philfine S.E. zu Ermgassen12, Caitlin Alcott12, Scott B. Alford13, Myriam A. Barbeau13, Sarah C. Crosby14, Kate Dodds15, Alyssa Frank1, Janelle Goeke16, Lucy

NEXTGEN VOICES: SUBMIT NOW

Defining events of 2020

Add your voice to Science! Our new NextGen Voices survey is now open:

What new word or phrase would you add to the dictionary to help scientists explain the events of 2020 to future generations?

To submit, go to www.sciencemag.org/nextgen-voices

Deadline for submissions is 20 November. A selection of the best responses will be published in the 1 January 2021 issue of Science. Anonymous submissions will not be considered.
A. Goodridge Gaines, Felicity E. Hardcastle, Christopher J. Henderson, W. Ryan James, Matthew D. Kenworthy, Justin Lesser, Debbrata Mallick, Charles W. Martin, Ashley E. McDonald, Catherine Mcluckie, Blair H. Morrison, James A. Nelson, Gregory S. Norris, Jeff Ollerhead, James W. Pahl, Sarah Ramsden, Jennifer S. Rehage, James F. Reinhardt, Ryan J. Rezek, L. Mark Risse, Joseph A. M. Smith, Eric L. Sparks, Lorie W. Staver, L. Sparks, Lorie W. Staver

1Department of Marine Sciences, University of South Alabama, Dauphin Island Sea Lab, Dauphin Island, AL 36528 USA. 2Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Nelson Bay, NSW 2315, Australia. 3Department of Marine and Coastal Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA. 4Institute of Marine Sciences, University of California, Santa Cruz, CA 95062, USA. 5Northern Gulf Institute, Mississippi State University, Stennis Marine Field Laboratory, University of South Carolina, Georgetown, SC 29442, USA. 6NOAA Fisheries, Southeast Fisheries Science Center, Galveston, TX 77551, USA. 7NOAA Fisheries, Estuarine Habitats and Coastal Fisheries Center, Lafayette, LA 70506, USA. 8School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195–5020, USA. 9Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. 10Centre for Tropical Water and Aquatic Ecosystem Research, and Marine Data Technologies Hub, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. 11New Jersey Marine Sciences Consortium, Fort Hancock, Sandy Hook, NJ 07043, USA. 12Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA. 13Changning Oceans Group, School of Geosciences, Grant Institute, University of Edinburgh, EH9 3FE, UK. 14Interfluve, Hood River, OR 97031 USA. 15University of Florida, Institute of Food and Agricultural Sciences, Nature Coast Biological Station, University of Florida, Cedar Key, FL 32625 USA. 16Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada. 17Harbor Watch, Earthplace Inc., Westport, CT 06880, USA. 18Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia. 19Department of Marine Biology, Texas A&M U, Galveston, TX 77554, USA. 20Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA. 21Department of Marine and Environmental Sciences, Savannah State University, Savannah, GA 31404, USA. 22Department of Environmental Science and Management, University of Newcastle, Ourimbah, NSW 2258, Australia. 23Geography and Environment Department, Mount Allison University, Sackville, NB E4L 1E4, Canada. 24Louisiana Coastal Protection and Restoration Authority, Baton Rouge, LA 70802, USA. 25Institute of Environment, Florida International University, Miami, FL 33199, USA. 26NOAA Fisheries, Restoration Center, Silver Spring, MD 20910, USA. 27Department of Earth and Environment, Institute of Environment, Florida International University, Miami, FL 33199, USA. 28University of Georgia Marine Extension and Georgia Sea Grant, Athens, GA 30602, USA. 29U.S. Fish and Wildlife Service, Galloway, NJ 08205, USA. 30Coastal Research and Extension Center, Mississippi State University, Biloxi, MS 39532, USA. 31Mississippi Alabama Sea Grant Consortium, Ocean Springs, MS 36564, USA. 32University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD 21617 USA.

*Corresponding author. Email: rbaker@disl.org

REFERENCES AND NOTES

10.1126/science.abe9332
Fisheries rely on threatened salt marshes

Science 370 (6517), 670-671.
DOI: 10.1126/science.abe9332