Received: 27 October 2020

Revised: 28 January 2021

'.) Check for updates

Accepted: 5 February 2021

DOI: 10.1111/faf.12546

ORIGINAL ARTICLE

FISH and FISHERIF:’S‘,:_"“‘. = WILEY

The influence of seafloor terrain on fish and fisheries: A global

synthesis

Hayden P. Borland!

| Ben L. Gilby!

| Christopher J. Henderson® | Javier X. Leon® |

Thomas A. Schlacher! | Rod M. Connolly? | Simon J. Pittman® | Marcus Sheaves* |

Andrew D. Olds!

School of Science and Engineering,
University of the Sunshine Coast,
Maroochydore, Qld, Australia

2Australian Rivers Institute - Coasts &
Estuaries, School of Environment and
Science, Griffith University, Gold Coast, Qld,
Australia

3School of Biological and Marine Sciences,
Marine Institute, University of Plymouth,
Plymouth, UK

“4College of Science and Engineering and
Centre for Tropical Water and Aquatic
Ecosystem Research, James Cook University,
Townsville, Qld, Australia

Correspondence

Hayden P. Borland, School of Science and
Engineering, University of the Sunshine
Coast, Maroochydore, Qld, Australia.

Email: hayden.borland@research.usc.edu.au

Funding information

Queensland Department of Agriculture
and Fisheries; Healthy Land and Water; Sea
World Research and Rescue Foundation

1 | INTRODUCTION

The spatial configuration of habitats, and the topographic com-
plexity of seafloor terrain, combines to structure the distribution,
abundance and diversity of fish populations and assemblages

across seascapes (Bouchet et al., 2015; Brown et al., 2011; Pygas
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The structure of seafloor terrain affects the distribution and diversity of animals in
all seascapes. Effects of terrain on fish assemblages have been reported from most
ecosystems, but it is unclear whether bathymetric effects vary among seascapes
or change in response to seafloor modification by humans. We reviewed the global
literature linking seafloor terrain to fish species and assemblages (96 studies) and
determined that relief (e.g. depth), complexity (e.g. roughness), feature classes (e.g.
substrate types) and morphology (e.g. curvature), have widespread effects on fish as-
semblages. Research on the ecological consequences of terrain have focused on coral
reefs, rocky reefs, continental shelves and the deep sea (n > 20 studies), but are rarely
tested in estuaries (n = 7). Fish associate with a variety of terrain attributes, and as-
semblages change with variation in the depth and aspect of bathymetric features
in reef and shelf seascapes, and in the deep sea. Fish from different seascapes also
respond to distinct metrics, with fluctuations in slope of slope (coral reefs), rugosity
(rocky reefs) and slope (continental shelves, deep sea) each linked to changes in as-
semblage composition. Terrain simplification from coastal urbanization (e.g. dredging)
and resource extraction (e.g. trawling) can reduce fish diversity and abundance, but
assemblages can also recover inside effective marine reserves. The consequences
of these terrain changes for fish and fisheries are, however, rarely measured in most
seascapes. The key challenge now is to examine how terrain modification and con-
servation combine to alter fish distributions and fisheries productivity across diverse

coastal seascapes.
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et al., 2020). These spatial attributes are important because fish
use multiple habitat types to feed and reproduce and often ag-
gregate in areas where seascape connectivity (i.e. spatial link-
ages between different habitat types) and terrain complexity
are elevated (Green et al., 2015; Nagelkerken et al., 2015; Olds,
Nagelkerken, et al., 2018). Structurally complex fish habitats such
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as biogenic ecosystems (e.g. corals, oysters) and prominent geo-
logical structures (e.g. pinnacles, seamounts), are well-recognized
aggregators of both biodiversity and fisheries productivity and
have become focal points for spatial conservation planning and
fisheries management (Bouchet et al., 2015; Pygas et al., 2020;
Seitz et al., 2014). The two-dimensional configuration and three-
dimensional complexity of these bathymetric features are now
routinely mapped with a diverse range of technologies to create
digital elevation models (DEMs) of the seafloor, which combined
with the geospatial processing power of modern computers, pro-
vides rich opportunities for research to investigate the ecologi-
cal effects of seafloor terrain variation on fish assemblages and
fisheries productivity (Costa et al., 2018; Pittman & Brown, 2011;
Stamoulis et al., 2018).

The importance of seafloor terrain (e.g. relief, ruggedness,
roughness) for fish is widely recognized (Moore et al., 2010; Pittman
et al., 2009; Wedding et al., 2008), but not all metrics used to index
terrain might be applicable (e.g. rugosity, Duvall et al., 2019; Pygas
et al., 2020). The ecological effects of terrain, as well as the impor-
tance of different terrain metrics, are likely to differ among sea-
scapes (Bouchet et al., 2017; Rees et al., 2014; Wedding et al., 2019).
Yet, there is no comprehensive synthesis that describes whether, and
how, changes in seafloor terrain illicit distinct responses from fish
assemblages in different seascapes. The terrain of most seascapes
have been significantly modified by humans (e.g. via seafloor dredg-
ing, beach nourishing, trawling, urbanization) and climate change
(e.g. through the mortality and degradation of reef-building corals),
but the possible ecological effects of this terrain modification on fish
assemblages and fisheries productivity are poorly understood (Collie
et al., 2017; Madricardo et al., 2019; Perry & Alvarez-Filip, 2019;
Stamoulis et al., 2018; Torres-Pulliza et al., 2020).

Here, we reviewed the published literature that links variation in
seafloor terrain to the distribution, abundance and diversity of fish as-
semblages. We searched the Elsevier Scopus and ISI Web of Knowledge

» o« » o«

databases using the keywords “fish” and “marine”, “coast”, “seascape” or

“ocean” and at least one of the following terms: “bathymetr*”, “terrain”,
“topograph*”, “digital elevation”, “three-dimension*, “lidar” or “sonar”
(see Supporting Information for more detail on Methods). The primary
goals of this review were to determine global patterns in the: (a) geo-
graphical distribution and focus of research linking fish assemblages to
changes in seafloor terrain; (b) ecological effects of seafloor terrain on
fish assemblages; (c) consequences of terrain variation among different
seascapes; (d) impacts of human activities that modify seafloor terrain
and fish assemblages; and (e) ability for prominent terrain features to

serve as targets for seascape conservation and fisheries management.

2 | SEASCAPE ECOLOGY OF FISH IN TWO
AND THREE DIMENSIONS

Two-dimensional maps of benthic habitats exist for many ecosys-
tems, and these are interrogated using models (e.g. patch-matrix and

patch-mosaic) (see review by Wedding et al., 2011) to predict how
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the composition (e.g. area, richness and diversity of habitat types)
and configuration (e.g. proximity between different habitat types) of
ecosystems, shape the distribution of fish assemblages (Henderson
et al., 2020a; van Lier et al., 2018; Swadling et al., 2019). This approach
has been used in many seascapes and typically shows that fish are
most diverse and abundant in ecosystems that provide a variety of
high-relief habitat features (e.g. coral reefs, seagrass meadows, man-
grove forests), particularly when these occur close to other habitat
that also contain complex structures (Nagelkerken et al., 2015; Olds
et al., 2016; Pittman, 2018). These models over-simplify the complex-
ity of seascapes by assuming that the ecological values of ecosys-
tems are consistent in two-dimensional space (McGarigal et al., 2009;
Pittman, 2018; Pittman & Olds, 2015). The significance of habitat for

fish assemblages, and other organisms, is, however, also likely to vary
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with changes in bathymetry across seascapes (Olds, Nagelkerken,
et al., 2018; Stamoulis et al., 2018). Gradient models that incorpo-
rate variation in the three-dimensional complexity of seascapes (e.g.
terrain) are, therefore, likely to out-perform patch-matrix and patch-
mosaic models in predicting spatial patterns in fish diversity and abun-
dance (Sekund & Pittman, 2017; Wedding et al., 2019).

Spatial variation in terrain (e.g. seafloor complexity and relief)
can modify the distribution of ecosystems and topographically com-
plex features, across seascapes (Goes et al., 2019; Ismail et al., 2018;
Wicaksono et al., 2019). These three-dimensional terrain features
alter the hydrodynamic properties of seascapes through their effects
on currents, tides and waves (Genin, 2004; Harris et al., 2018; Rogers,
Maticka, et al., 2018) and provide fish with important refuges from
predation, feeding areas and spawning zones (Bouchet et al., 2017,
Farmer et al., 2017; Pirtle et al., 2017). Terrain features have been de-
rived, and widely mapped, on coral and rocky reefs, over continental
shelves and in some areas of the deep sea, using passive (e.g. satel-
lite imagery) and active (e.g. Light Detection and Ranging: LiDAR;
Sound Navigation and Ranging: SONAR) sensors (Costa et al., 2018;
Goodell et al., 2018; Sievers et al., 2016; Wedding et al., 2019), and
through emerging techniques such as Structure-from-Motion (SfM)
photogrammetry that derives digital terrain models from overlap-
ping images (Bayley et al., 2019; Gonzalez-Rivero et al., 2017; Leon
et al., 2015; Storlazzi et al., 2016). They are typically measured using
a variety of terrain metrics, which index variation in the depth, ver-
tical relief, morphology and complexity of the seafloor (Cameron
et al., 2014; Oyafuso et al., 2017; Pirtle et al., 2017) and are summa-
rized (e.g. mean, max, min, range, standard deviation) at a variety of
spatial scales (e.g. metres to kilometres) (Knudby et al., 2011; Rees
et al., 2018; Sekund & Pittman, 2017). Terrain metrics quantify prop-
erties of benthic ecosystems that underpin their role in providing
habitat for fish, and variation in fish diversity and abundance has

been linked to spatial variation in terrain metrics (e.g. rugosity, slope,
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slope of slope) on coral and rocky reefs, continental shelves and the
deep sea (Coleman et al., 2016; Moore et al., 2016; Parra et al., 2017;
Wedding et al., 2019). Well known examples that illustrate the sig-
nificance of terrain features as fish habitat include: high rugosity on
coral reefs (Pittman et al., 2007; Wedding et al., 2008), sheltered
caves on rocky reefs (Monk et al., 2010; Pirtle et al., 2017), low-
sloping soft sediments on continental shelves (Moore et al., 2016;
Smolinski & Radtke, 2017) and high-relief pinnacles in the deep sea
(Leitner et al., 2017; Oyafuso et al., 2017).

3 | GLOBAL DISTRIBUTION OF RESEARCH
EFFORT LINKING SEAFLOOR TERRAIN
WITH FISH

We found 96 research articles in the peer-reviewed literature that
investigated the effects of seafloor terrain on fish assemblages. This
research was comprised of studies from coral reef (n = 27), rocky
reef (n =22), deep sea (depth range: 200-5,000 m; n = 20), continen-
tal shelf (n = 20) and estuarine (n = 7) seascapes (Table S1). Research
effort is geographically widespread, encompassing studies from the
United States (n = 37), Australia (n = 20), France (n = 7), Antarctica
(n = 4) and Brazil (n = 4) (Figure 1).

4 | FOCUS OF RESEARCH LINKING
SEAFLOOR TERRAIN WITH FISH

There was substantial variation in the approaches applied to quan-
tify seafloor terrain structures, with 23 different terrain metrics
being used across the 96 studies (mean per paper = 3, range: 1-
10). Terrain metrics are derived using numerous Geographical
Information Systems (GIS) (e.g. ArcGIS, QGIS, SAGA GIS) and

Number of studies

o1 02-5 : :6—9 : :10_11

FIGURE 1 Global distribution of research linking changes in seafloor terrain to variation in the composition of fish assemblages (n = 96).

Pie charts illustrate the categories of terrain metrics examined and are scaled to represent the number of studies from each country. Arrows
indicate the geographic region of research for large countries where research effort has been intensive. Global bathymetry map courtesy of
GEBCO (https://www.gebco.net/). mbsl = metres below sea level. Figure appears in colour in the online version only [Colour figure can be

viewed at wileyonlinelibrary.com]
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toolboxes (e.g. Benthic Terrain Modeler, ArcGeomorphometry),
which use discrete geoprocessing tools and mathematical equations
to index different seafloor features (Rigol-Sanchez et al., 2015;
Walbridge et al., 2018). However, many describe similar types of ter-
rain variation and are therefore, characterized by high co-linearity
with other similar terrain metrics (e.g. rugosity, slope, slope of slope)
(Leitner et al., 2017; Monk et al., 2010; Sekund & Pittman, 2017).
To better understand patterns of metric applications, we grouped
terrain metrics into four categories based on similarities in the ter-
rain features being indexed: (a) seafloor relief; (b) seafloor complex-
ity; (c) seafloor feature class; and (d) seafloor morphology (Table 1;
Figures 1 and 2).

4.1 | Seafloor relief

Seafloor relief is a measure of the depth and height of terrain fea-
tures below sea level (Moore et al., 2010; Rees et al., 2014; Sievers
et al., 2016). This component of terrain is widely recognized as
a primary determinant in shaping both the distribution of fish
populations and the composition of fish assemblages (Coleman
et al., 2018; Pereira et al., 2018; Stamoulis et al., 2018). This is
because variation in seafloor depth and relief is strongly linked
to changes in many abiotic features (e.g. temperature, salinity,
light) that regulate photosynthesis, alter patterns in diel vertical

migration and bentho-pelagic coupling and modify the structure

TABLE 1 Metrics used to link changes in terrain to variation in the composition of fish assemblages. Terrain metrics are grouped into
four categories (i.e. seafloor relief, seafloor complexity, seafloor feature class and seafloor morphology) based on similarities in the terrain

features they index. Descriptions and example references are provided for each terrain metric

Terrain metric

Seafloor relief
Average depth
Contour index
Vertical relief
Seafloor complexity
Depth (standard deviation)
Fractal dimensions

Rugosity

Slope

Slope of slope

Terrain ruggedness index (TRI)
Seafloor feature class

Backscatter

Bathymetric position index (BPI)

Depth-invariant index

Substratum classification
Seafloor morphology

Absolute curvature

Aspect

Kurtosis

Maximum curvature

Mean curvature

Plan curvature
Plane morphometry
Profile curvature

Ridge morphometry

Tangential curvature

Description

Average depth of a feature below sea level
Per cent change in the depth of a feature

Maximum range in the depth of a feature

Standard deviation of the depth of a feature below sea level
A ratio measure of seafloor roughness

Index of seafloor complexity: surface area to planar area
ratio

Maximum change in elevation (degrees)
Maximum rate of slope change (degrees of degrees)

3D complexity of grid cells in surrounding neighbourhood

Classifies features from the hardness or softness of the
seafloor

Classifies features from seafloor elevation

Classifies features from the reflectance of different spectral
bands

Classifies features from bathymetric maps

Maximum curvature of a feature (convex or concave)
Compass direction of a feature

The sharpness of a curved surface

Maximum convexity of a feature

Combines the index of both profile and plan curvature (see
below)

Horizontal curvature of a feature
Proportion of cells without concavity or convexity
Vertical curvature of a feature

Proportion of convex cells at right angles to cells with no
curvature

Curvature of a feature perpendicular to the slope gradient

Example

Maravelias (1999)
Bouchet et al. (2017)
Moore et al. (2010)

Pittman et al. (2007)
Pittman et al. (2009)
Kuffner et al. (2007)

Wedding and Friedlander (2008)
Pittman et al. (2009)
Young et al. (2010)

Maravelias (1999)

lampietro et al. (2005)
Knudby et al. (2010)

Purkis et al. (2008)

Knudby et al. (2011)
lampietro et al. (2008)
Bayley et al. (2019)
Monk et al. (2010)
Moore et al. (2009)

Pittman et al. (2009)

Cameron et al. (2014)
Quattrini et al. (2012)
Cameron et al. (2014)

Biber et al. (2014)
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FIGURE 2 Terrain metrics were grouped into four categories based on similarities in the bathymetric features they index. Seafloor relief
metrics (a) measure the depth and height of bathymetric features (e.g. average depth, vertical relief). Seafloor complexity metrics (b) describe
the vertical roughness of the seabed (e.g. rugosity, slope, slope of slope). Seafloor feature class (c) metrics categorize features based on
discrete bathymetric variation (e.g. rock, soft sediment). Seafloor morphology metrics (d) quantify the physical characteristics of bathymetric
features (e.g. aspect, curvature) (Table 1). Symbols courtesy of the IAN Network (http://ian.umces.edu/symbols/). Figure appears in colour in
the online version only [Colour figure can be viewed at wileyonlinelibrary.com]

of food webs (Barbini et al., 2018; Jankowski et al., 2015; Young
etal., 2018) (Table 2). Prominent high-relief features of the seafloor
(e.g. pinnacles, seamounts) also serve as focal points for fish spawn-
ing aggregations and resting points during long-distance migrations
(Clark et al., 2010; Farmer et al., 2017; Kobara & Heyman, 2008;
Rowden et al., 2010). Terrain metrics that index variation in sea-
floor depth and relief include: (a) average depth: the mean seafloor
depth within a focal seascape (e.g. Pittman et al., 2009); (b) contour
index: the per cent change in depth, or vertical relief, within a focal
seascape (e.g. Bouchet et al., 2017); and (c) vertical relief: the range
of seafloor depths within a focal seascape (e.g. Moore et al., 2010)
(Table 1; Figure 2).

4.2 | Seafloor complexity

Seafloor complexity is a measure of the topographic roughness
of terrain features (Kuffner et al., 2007; Pittman & Brown, 2011;
Stamoulis et al., 2018). Variation in the complexity of the sea-
floor has been linked to changes in the abundance and diver-
sity of fishes across most seascapes (Bayley et al., 2019; Ferrari,
Malcolm, Byrne, et al., 2018; Oyafuso et al., 2017). Rough, rugged

and high rugosity features of the seafloor support a range of fish

populations in high abundance because these areas are character-
ized by high niche diversity and provide foraging areas, refuges
from predation and spawning sites for species from the full suite
of functional groups (Ferrari, Malcolm, Byrne, et al., 2018; Pygas
et al., 2020; Wedding et al., 2008) (Table 2). Historically, seafloor
complexity was measured in situ (e.g. chain and tape rugosity;
Risk, 1972), and this is a useful predictor of fish abundance and di-
versity, but this technique is both time consuming and is typically
limited to small areas of a single habitat (i.e. coral reefs) (Harborne
et al., 2012; Kuffner et al., 2007; Wedding et al., 2008). Seafloor
complexity can now be indexed with terrain metrics derived from
bathymetric maps, which describe the complexity of the seafloor
by comparing depth variation across a broad range of spatial
scales (Dunn & Halpin, 2009; Pittman et al., 2007; Torres-Pulliza
et al,, 2020; Wilson et al., 2007). Terrain metrics that quantify vari-
ation in seafloor complexity include: (a) depth standard deviation:
the standard deviation of the depth of a feature below sea level
(e.g. Pittman et al., 2007); (b) fractal dimensions: a ratio measure
of seafloor roughness, typically measured as values between 2 and
3 (e.g. Pittman et al., 2009); (c) rugosity: the ratio of bathymet-
ric and planar surface areas (Kuffner et al., 2007); (d) slope: the
maximum change in elevation measured in degrees (e.g. Wedding

& Friedlander, 2008); (e) slope of slope: the maximum rate of slope
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TABLE 2 Summary of common mechanisms proposed to account for observed relationships between fish and seafloor terrain

Terrain metric
category

Seafloor relief

Seafloor
complexity

Seafloor feature
class

Seafloor
morphology

Mechanism

Predator refuge

Food and habitat
availability

Fisheries avoidance

Water quality

Predator refuge

Predator detection

Food availability

Foraging habitats

Food availability

Predator refuge

Reproduction sites

Hydrodynamic
conditions
Food availability

Nutrient inputs

Fisheries avoidance

Rationale

Shallow and high-relief features provide refuge
locations for small-bodied fishes by limiting the
manoeuvrability of large-bodied predators

Seafloor relief alters light availability, and primary
production, and modifies the availability of food
resources and vegetative habitat

Large-bodied fish inhabit deep, high-relief
seascapes where fishing susceptibility is reduced

Abiotic water conditions (e.g. oxygen,
temperature, pH, salinity) change with variation
in seafloor relief

Seafloors with high architectural complexity have
more spaces for small species and juveniles to
hide from predators

High terrain variability limits the ability for species
to detect approaching predators

Seafloor complexity modifies the abundance and
availability of prey species

Seafloor complexity modifies the distribution of
foraging grounds

Different terrain features support distinct
prey species and provide unique foraging
opportunities

Variation in the structure of terrain features
modifies their utility as predator refuges

Suitable spawning locations are determined by
the distinct physical characteristics of terrain
features

Seafloor morphology modifies the intensity and
direction of water currents and wave conditions

Altered hydrodynamic activity modifies the
availability of prey species

Terrain morphology alters the prevalence, and
intensity, of chemicals transported by run-off

Species avoid hydrodynamically sheltered areas,
that are target locations for fishers

References

Bassett et al. (2018), Parra et al. (2017),
Pirtle et al. (2017)

Galaiduk et al. (2017), Hill et al. (2014)

Stamoulis et al. (2018)

Parra et al. (2017), Smolinski and Radtke
(2017), Weijerman et al. (2019)

Pittman et al. (2007), Ticzon et al. (2015),
Wedding et al. (2019)

Catano et al. (2015), Ferrari, Malcolm,
Byrne, et al. (2018)

Coleman et al. (2016), Rees et al. (2018),
Weijerman et al. (2019)

Catano et al. (2015), Ferrari, Malcolm,
Byrne, et al. (2018)

Fabrizio et al. (2013), Leitner et al. (2017)

Auster et al. (2001), Misa (2013), Ticzon
et al. (2015)

Farmer et al. (2017), Maravelias (1999)

Cameron et al. (2014), Coleman
et al. (2016), Pirtle et al. (2017)

Coleman et al. (2016), Weijerman
et al. (2019), Young et al. (2010)

Stamoulis et al. (2018)

Stamoulis et al. (2018)

change measured in degrees of degrees (e.g. Pittman et al., 2009);
and (f) benthic terrain ruggedness index (TRI) or vector rugged-
ness index (VRM): the ruggedness of the seafloor measured by
accounting for changes in both slope and aspect, with values typi-
cally falling between O (low ruggedness) and 1 (high ruggedness)
(e.g. Young et al., 2010) (Table 1; Figure 2).

4.3 | Seafloor feature class

Seafloor feature class is a measure of the unique terrain features,
or habitats, within a seascape (Kenny et al., 2003; Lundblad
et al., 2006). Seascapes are comprised of diverse ecosystems and
seafloor features, which provide multiple habitat functions for

marine fauna, including refuge from predators, foraging areas,

spawning sites and dispersal corridors (Henderson et al., 2019;
Sheaves et al., 2015; Whitfield, 2017) (Table 2). The ecological
values of discrete terrain features, or seafloor feature classes,
can differ markedly between features with distinct physical
characteristics, and this modifies the composition of fish as-
semblages across seascapes (Cameron et al., 2014; Giddens
et al., 2019; Purkis et al., 2008). Terrain metrics that represent
this discrete variation in bathymetry, include: (a) backscatter:
variation in the hardness, or softness, of the seafloor based on
acoustic reflectance and scattering from multi-beam sonar (e.g.
Monk et al., 2010); (b) bathymetric position index (BPI): catego-
rizes variation in seafloor elevation, with larger values indicating
elevational highs (e.g. pinnacles, seamounts) and smaller values
indicating elevational lows (e.g. valleys, trenches) (e.g. lampietro

et al., 2005); (c) depth-invariant index: variation among different
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habitats and substrates (e.g. reefs, seagrass, sand, mud, rock)
based on the spectral bands of satellite imagery (e.g. Knudby
et al.,, 2010); and (d) substratum classification: categorizes ba-
thymetric maps into terrain features that differ in ecological or
biophysical attributes, such as reefs and soft sediment (e.g. Hill
et al., 2014; Moore et al., 2016), reefs and lagoons (e.g. Knudby
et al., 2011; Purkis et al., 2008) and peaks, slopes and valleys (e.g.
Young et al., 2010) (Table 1; Figure 2).

4.4 | Seafloor morphology

Seafloor morphology is a measure of the shape of terrain features,
which encompasses variation in both their orientation (i.e. aspect)
and level of roundness (i.e. curvature) (Abdul Wahab et al., 2018;
Pittman et al., 2009; Stamoulis et al., 2018). These metrics are de-
rived from the physical and earth sciences (i.e. geology, hydrol-
ogy, geomorphology) and were first developed to describe water
flow, quantify erosion and deposition rates and measure solar ra-
diation (Lecours et al., 2016; Leempoel et al., 2015; Moore, 1991;
Pike, 2000). The aspect and curvature of terrain features can af-
fect the distribution, diversity and abundance of marine fauna
through their effects on local hydrodynamic conditions and light
penetration (Bouchet et al., 2015; Pirtle et al., 2017; Stamoulis
et al., 2018) (Table 2). These attributes combine to modify the
distribution of: refuges to exposure (e.g. from currents, tides and
waves), local productivity and food web structure (e.g. through
effects on plankton and algae) and both food and habitat avail-
ability for fish (Cameron et al., 2014; Moore et al., 2010; Pittman &
Brown, 2011). The aspect of a terrain feature is typically measured
as it's direction of orientation, with values ranging between 1 and
-1 used to represent both “northness” (i.e. 1 = north; -1 = south)
and “eastness” (i.e. 1 = east; -1 = west) (Table 1). A variety of
other seafloor morphology metrics describe the characteristics
of a curved surface, including: (a) curvature (i.e. absolute, maxi-
mum, mean, plan, profile or tangential curvature): the morpho-
logical shape of a feature, with negative values indicating convex
curvature and positive values indicating concave curvature (e.g.
Biber et al., 2014; Monk et al., 2010; Moore et al., 2009; Quattrini
et al., 2012; Yates et al., 2019); (b) plane morphometry: the pro-
portion of features without convexity or concavity (e.g. Cameron
et al., 2014); (c) ridge morphometry: the proportion of convex fea-
tures to cells with no curvature (e.g. Cameron et al., 2014); and (d)
kurtosis: the sharpness of a curved feature (e.g. Bayley et al., 2019)
(Table 1; Figure 2).

5 | LINKS BETWEEN SEAFLOOR TERRAIN
AND FISH DISTRIBUTION, ABUNDANCE
AND DIVERSITY

Variation in seafloor terrain has been linked to changes in the dis-

tribution of fish populations and fluctuations in the abundance

’SAI/

ES

and diversity of fish, from coral reef, rocky reef, deep sea, con-
tinental shelf and estuarine seascapes (Figure 3). Across all sea-
scapes examined in this review, more studies report positive
(n = 111) than negative (n = 55) effects and more studies report
significant (n = 166, combined positive and negative effects) then
neutral effects (n = 146) of terrain, on fish diversity and abun-
dance (Figure 3; see Supporting Information for methods used to
define variable responses). Variability in the direction and strength
of association between terrain structure and fish response may
relate to the way terrain was quantified (i.e. the choice of metrics),
differences in the habitat structure of focal seascapes (i.e. coral
reef, rocky reef, deep sea, continental shelf, estuary) and scale ef-
fects. Overall, there have been more positive and negative, than
neutral, associations between fish diversity and abundance and
metrics that index seafloor relief, seafloor complexity and seafloor
feature class (Figure 3). By contrast, there have been more neutral,
than negative or positive, associations between fish diversity and
abundance and metrics that index seafloor morphology (Figure 3).
These findings suggest that variation in fish abundance and diver-
sity might be positively linked to the relief and complexity of ter-
rain features, rather than the morphology of the seafloor (Moore
et al., 2016; Oyafuso et al., 2017). There were, however, substan-
tial differences in the ecological effects of seafloor terrain among
seascapes.

There is a significant bias in the distribution of research on
seafloor terrain among seascapes, with most studies focusing on
the ecological effects of terrain variation on coral reefs (n = 27),
rocky reefs (n = 22), the deep sea (n = 20) and continental shelves
(n = 20) and comparatively fewer studies linking terrain features to
fish assemblages in estuaries (n = 7) (Figure 3, Table S1). Positive
effects of terrain on fish were more common in studies from rocky
reefs and the deep sea, whereas negative effects were more com-
mon in studies from continental shelves and estuaries. By contrast,
the effects of terrain on fish were highly variable in studies from
coral reefs, which report more neutral, then either positive or neg-
ative, effects (Figure 3). These results indicate that the response of
fish assemblages to seafloor terrain might vary among seascapes
and suggest that different metrics may be needed to index terrain
effects on fish in distinct ecosystems. A large number of studies
(n = 146) report neutral effects of seafloor terrain on fish diversity
and abundance, and these results might be hindered by the adop-
tion of terrain metrics that are not particularly suited to the sea-
scape of interest (e.g. slope on coral reefs, mean curvature on rocky
reefs and rugosity on continental shelves) (Coleman et al., 2016;
Schultz et al., 2014; Wedding & Friedlander, 2008). The prevalence
of neutral effects might also reflect species-specific terrain associ-
ations that limit the detectability of significant effects of terrain on
community metrics (e.g. fish abundance, diversity, biomass), or the
application of statistical analyses that either fail to incorporate the
correct linearity of fish-terrain relationships (e.g. using linear re-
gressions to model non-linear relationships) or do not include vari-
able interactions (Knudby et al., 2011; Oyafuso et al., 2017; Pittman
et al., 2007).
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6 | CONSISTENCY IN TERRAIN EFFECTS (n = 23), feature class (n = 10) and morphology (n = 9) (Table S1,

AMONG MARINE SEASCAPES
6.1 | Coral reef
Twenty-seven studies using a total of 17 different terrain metrics

investigated the influence of seafloor terrain on coral reef fishes,

including metrics to quantify seafloor relief (n = 16), complexity

Figure 4).

6.1.1 | Seafloor relief

The ecological effects of seafloor relief on coral reef fishes were

highly variable, with studies reporting positive (53%), negative (16%)
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and neutral (31%) effects (Figure 4). Two terrain metrics have been
used to index effects of seafloor relief on coral reef fish: average
depth (n = 14) and vertical relief (n = 5), with average depth being the
best performing metric (Figures 5 and 6, Table S4). Positive effects
of seafloor relief have been reported from research on both vertical
relief (60%) and average depth (50%), negative effects from research
on average depth (21%) and neutral effects from research on both
vertical relief (40%) and average depth (29%) (Figure S1; see Table 3
and Table S5 for additional details).

Coral reef Rocky reef Deepsea Continental

shelf

Estuary

Seascape

6.1.2 | Seafloor complexity

The ecological effects of seafloor complexity on coral reef fishes were
either positive (50%) or neutral (48%) (Figure 4). Five terrain metrics
have been used to index effects of seafloor complexity on coral reef
fish, including: rugosity (n = 15), slope (n = 8), slope of slope (n = 8),
depth standard deviation (n = 6) and fractal dimensions (n = 1), with
slope of slope being the best performing metric (Figures 5 and 6,

Table S4). Positive effects of seafloor complexity have been reported
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FIGURE 5 Consistency in the predictive performance of terrain metrics among seascapes (i.e. the proportion of studies reporting
significant positive or negative effects from those that measured each metric). Coloured boxes designate terrain metric categories: blue
(seafloor relief), yellow (seafloor complexity), green (seafloor feature class) and red (seafloor morphology). Black bars highlight the best
performing terrain metric in each category for each seascape (e.g. average depth was the best seafloor relief metric in all seascapes, and
rugosity was the best seafloor complexity metric in rocky reef seascapes). Terrain metrics that were used in two, or fewer, studies were
omitted from performance calculations due to data limitations. SD = standard deviation. Figure appears in colour in the online version only

[Colour figure can be viewed at wileyonlinelibrary.com]
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from research on slope of slope (75%), rugosity (53%), slope (38%)
and depth standard deviation (33%), negative effects from research

on slope (12%) and neutral effects from research on fractal dimension

FIGURE 6 Summary of terrain
metrics that were correlated with the
strongest effects on fish assemblages

in each seascape. Numbers represent
the total research effort for each terrain
metric, and pie charts illustrate the
proportion of studies reporting positive
(blue), negative (orange) or neutral (grey)
effects (see Figures S1-S5 for data on
the performance of each terrain metric in
each seascape). Figure appears in colour in
the online version only [Colour figure can
be viewed at wileyonlinelibrary.com]

(100%), depth standard deviation (67%), slope (50%), rugosity (47%)
and slope of slope (25%) (Figure S1; see Table 3 and Table S5 for ad-

ditional details).
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6.1.3 | Seafloor feature class

The ecological effects of seafloor feature class on coral reef fishes were
either positive (45%) or neutral (55%) (Figure 4). Four terrain metrics
have been used to index effects of seafloor feature class on coral reef
fishes: substratum classification (n = 4), backscatter (n = 3), BPI (n = 2)
and depth-invariant index (n = 2), with substratum classification being
the best performing metric (Figures 5 and 6, Table S4). Positive effects
of seafloor feature class have been reported from research on substra-
tum classification (100%) and backscatter (33%) and neutral effects
from research on depth-invariant index (100%) and backscatter (67%)
(Figure S1; see Table 3 and Table S5 for additional details).

6.1.4 | Seafloor morphology

The ecological effects of seafloor morphology on coral reef fishes were
highly variable, with studies reporting positive (16%), negative (5%) and
neutral (79%) effects (Figure 4). Six terrain metrics were used to index
the effects of seafloor morphology on coral reef fish: plan curvature
(n = 6), aspect (n = 4), mean curvature (n = 3), profile curvature (n = 3),
absolute curvature (n = 2) and kurtosis (n = 1), with aspect being the
best performing metric (Figures 5 and 6, Table S4). Most studies re-
ported neutral effects of seafloor morphology on coral reef fishes,
from research on absolute curvature (100%), mean curvature (100%),
profile curvature (100%), kurtosis (100%), plan curvature (66%) and as-
pect (50%) (Figure S1). Positive effects of seafloor morphology were,
however, reported from research on aspect (50%) and plan curvature
(17%), and negative effects were also reported from research on plan
curvature (17%) (Figure S1; see Table 3 and Table S5 for additional
details).

6.2 | Rocky reef

Twenty-two studies using 18 different terrain metrics investigated
the ecological effects of seafloor terrain on rocky reef fishes, includ-
ing metrics to quantify seafloor relief (n = 21), seafloor complexity
(n = 21), seafloor feature class (n = 17) and seafloor morphology
(n =12) (Table S1, Figure 4).

6.2.1 | Seafloor relief

The ecological effects of seafloor relief on rocky reef fishes were
highly variable, with studies reporting positive (24%), negative (40%)
and neutral (36%) effects (Figure 4). Two terrain metrics have been
used to index the effects of seafloor relief on rocky reef fish: average
depth (n = 18) and vertical relief (n = 7), with average depth being the
best performing metric (Figures 5 and 6, Table S4). Positive effects
of seafloor relief have been reported from research on both vertical
relief (29%) and average depth (22%), negative effects from research

on average depth (56%) and neutral effects from research on both

vertical relief (71%) and average depth (22%) (Figure S2; see Table 4
and Table S5 for additional details).

6.2.2 | Seafloor complexity

The ecological effects of seafloor complexity on rocky reef fishes were
also highly variable, with studies reporting positive (42%), negative
(8%) and neutral (50%) results (Figure 4). Six terrain metrics have been
used to index effects of seafloor complexity on rocky reef fish: slope
(n = 13), rugosity (n = 11), depth standard deviation (n = 5), TRl (n = 3),
slope of slope (n = 2) and fractal dimension (n = 2), with rugosity being
the best performing metric (Figures 5 and 6, Table S4). Positive effects
of seafloor complexity were reported from research on slope of slope
(100%), rugosity (64%), fractal dimension (50%), slope (31%) and depth
standard deviation (20%), negative effects from research on slope
(23%) and neutral effects from research on TRI (100%), depth stand-
ard deviation (80%), fractal dimensions (50%), slope (46%) and rugosity
(36%) (Figure S2; see Table 4 and Table S5 for additional details).

6.2.3 | Seafloor feature class

The ecological effects of seafloor feature class on rocky reef fishes
were mostly positive (60%), but some studies also reported negative
(15%) and neutral (25%) effects (Figure 4). Three terrain metrics have
been used to index effects of seafloor feature class on rocky reef fishes:
BPI (n = 13), backscatter (n = 5) and substratum classification (n = 2),
with backscatter being the best performing metric (Figures 5 and 6,
Table S4). Positive effects of seafloor feature class were reported from
research on substratum classification (100%), backscatter (60%) and
BPI (54%), negative effects from research on backscatter (20%) and BPI
(15%) and neutral effects from research on BPI (31%) and backscatter
(20%) (Figure S2; see Table 4 and Table S5 for additional details).

6.2.4 | Seafloor morphology

The ecological effects of seafloor morphology on rocky reef fishes
were highly variable, with studies reporting positive (21%), nega-
tive (18%) and neutral (61%) effects (Figure 4). Seven terrain metrics
were used to test for the effects of seafloor morphology on rocky
reef fish: aspect (n = 11), mean curvature (n = 5), plan curvature
(n = 4), profile curvature (n = 4), maximum curvature (n = 2), plane
morphometry (n = 1) and ridge morphometry (n = 1), with aspect
being the best performing metric (Figures 5 and 6, Table S4). Positive
effects of seafloor morphology have been reported from research
on maximum curvature (50%), aspect (36%) and profile curvature
(25%), negative effects from research on maximum curvature (50%)
and aspect (36%) and neutral effects from research on mean cur-
vature (100%), plan curvature (100%), plane morphometry (100%),
ridge morphometry (100%), profile curvature (75%) and aspect (28%)
(Figure S2; see Table 4 and Table S5 for additional details).
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TABLE 3 Summary of the effects of terrain on fish assemblages in coral reef seascapes (see Table S5 for more details)

Terrain metric

category Terrain metric

Seafloor relief Average depth

Vertical relief

Seafloor Depth (SD)
complexity Rugosity
Slope

Slope of slope

Seafloor feature Backscatter
class Substratum
classification
Seafloor Aspect
morphology

Plan curvature

Fish metric
Total abundance, diversity or
biomass

Abundance, biomass or presence
of 7 species

Biomass of 1 family
Biomass of 1 functional group

Total abundance, diversity,
density or biomass

Abundance or presence of 2
species

Total diversity
Total diversity or density

Total abundance, diversity or
biomass

Abundance, biomass or presence
of 3 species

Abundance or diversity of 3
functional groups

Total abundance, biomass or
length

Abundance or biomass of 1
species

Abundance of 1 functional group

Total diversity, functional
diversity or functional
redundancy

Total abundance, diversity, body
length, density or biomass

Abundance or biomass of 4
species

Biomass of 2 families

Abundance, biomass or diversity
of 2 functional groups

Density or biomass of 5 species

Total abundance, diversity or
biomass

Total biomass or length

Abundance or biomass of 3
species

Biomass of 1 family

Biomass of 1 functional group

Effect Reference

Positive Knudby et al. (2011), Stamoulis et al. (2018),
Walker et al. (2009)

Positive Pittman and Brown (2011), Pittman
et al. (2009), Roos et al. (2015), Yates
et al. (2016)

Positive Pittman et al. (2009)

Positive Pittman et al. (2009)

Negative Abdul Wahab et al. (2018), Costa et al. (2014),
Wedding et al. (2019)

Negative Goodell et al. (2018), Pittman and Brown
(2011)

Positive Walker et al. (2009)

Positive Costa et al. (2014), Pittman et al. (2007)

Positive Bayley et al. (2019), Knudby et al. (2010),
Purkis et al. (2008), Walker et al. (2009),
Wedding et al. (2008)

Positive Pittman and Brown (2011), Pittman
et al. (2009)

Positive Catano et al. (2015), Pittman et al. (2009),
Purkis et al. (2008)

Positive Abdul Wahab et al. (2018), Stamoulis
et al. (2018)

Positive Pittman et al. (2009)

Positive Pittman et al. (2009)

Negative Yeager et al. (2017)

Positive Pittman et al. (2009), Roos et al. (2015),
Stamoulis et al. (2018), Wedding et al. (2019)

Positive Pittman and Brown (2011), Pittman
et al. (2009)

Positive Pittman et al. (2009)

Positive Pittman et al. (2009)

Positive Bejarano et al. (2011)

Positive Knudby et al. (2011), Purkis et al. (2008),
Ticzon et al. (2015), Walker et al. (2009)

Positive Stamoulis et al. (2018), Wedding et al. (2019)

Positive Pittman and Brown (2011), Pittman
et al. (2007)

Positive Pittman et al. (2007)

Positive Pittman et al. (2007)

6.3 | Deep sea

Twenty studies used 16 different terrain metrics to investigate the
ecological effects of seafloor terrain on deep sea fishes, includ-
ing metrics to quantify seafloor relief (n = 13), seafloor complex-
ity (n = 15), seafloor feature class (n = 7) and seafloor morphology
(n=7) (Table S1, Figure 4).

6.3.1 | Seafloor relief

The ecological effects of seafloor relief on deep sea fishes were
mostly positive (60%), but there were also some reports of negative
(20%) and neutral (20%) effects (Figure S1). Three terrain metrics
were used to index the effects of seafloor relief on deep sea fish: av-

erage depth (n = 12), vertical relief (n = 2) and contour index (n = 1),
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TABLE 4 Summary of the effects of terrain on fish assemblages in rocky reef seascapes (see Table S5 for more details)

Terrain metric

category Terrain metric

Seafloor relief Average depth

Vertical relief

Seafloor Depth (SD)
complexity EraciEl
dimensions
Rugosity
Slope

Slope of slope

Seafloor feature  Backscatter
class
BPI
Substratum

classification

Fish metric

Abundance, presence or biomass
of 20 species

Abundance of 1 functional group
Total diversity

Abundance or presence of 16
species

Biomass of 1 family

Abundance, biomass or presence
of 6 functional groups

Biomass, density or length of 3
species

Abundance of 1 family
Density of 2 species
Abundance of 1 species

Abundance of 6 species

Total abundance & diversity

Abundance or presence of 5
species

Abundance of 1 family
Abundance of 2 functional groups

Abundance of 6 species

Abundance of 1 family

Biomass or presence of 2
functional groups

Total diversity

Presence of 5 species

Abundance of 3 functional groups
Total diversity

Abundance, density or biomass of
9 species

Abundance, density, presence or
length of 10 species

Biomass & presence of 2
functional groups

Presence or length of 3 species
Total diversity

Biomass, density or presence of
15 species

Presence of 2 species

Presence of 1 species

Effect

Positive

Positive
Negative

Negative

Negative

Negative

Positive

Positive
Negative
Positive

Positive

Positive

Positive

Positive
Positive

Positive

Positive

Positive

Negative
Negative
Negative
Positive

Positive

Positive

Positive

Negative
Positive

Positive

Negative

Positive

Reference

Bassett et al. (2018), Cameron et al. (2014), Ferrari,
Malcolm, Neilson, et al. (2018), Monk et al. (2010),
Moore et al. (2010), Wedding and Yoklavich (2015)

Ferrari, Malcolm, Neilson, et al. (2018)
Cameron et al. (2014)

Cameron et al. (2014), Fabrizio et al. (2013),
Huff et al. (2011), lampietro et al. (2008), Monk
et al. (2010), Moore et al. (2010), Pirtle et al. (2017),
Sievers et al. (2016)

Ferrari, Malcolm, Neilson, et al. (2018)

Ferrari, Malcolm, Neilson, et al. (2018), Ferrari,
Malcolm, Byrne, et al. (2018), Weijerman
et al. (2019)

Sievers et al. (2016)

Williams et al. (2019)
Sievers et al. (2016)
Rees et al. (2018)

Ferrari, Malcolm, Neilson, et al. (2018)

Cameron et al. (2014), Coleman et al. (2016), Williams
et al. (2019)

Monk et al. (2011), Monk et al. (2010), Williams
et al. (2019)

Williams et al. (2019)
Ferrari, Malcolm, Byrne, et al. (2018)

Cameron et al. (2014), Fabrizio et al. (2013), Williams
et al. (2019)

Williams et al. (2019)
Weijerman et al. (2019)

Cameron et al. (2014)

Pirtle et al. (2017)

Ferrari, Malcolm, Byrne, et al. (2018)
Young and Carr (2015)

Wedding and Yoklavich (2015), Young and Carr
(2015)

Fabrizio et al. (2013), Monk et al. (2010), Sievers
et al. (2016)

Weijerman et al. (2019)

Monk et al. (2011), Sievers et al. (2016)
Cameron et al. (2014)

Huff et al. (2011), lampietro et al. (2005), lampietro
et al. (2008), Moore et al. (2010), Pirtle et al. (2017),
Young and Carr (2015), Young et al. (2010)

Pirtle et al. (2017)
Huff et al. (2011)

(Continues)
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TABLE 4 (Continued)

Terrain metric

category Terrain metric Fish metric

Seafloor
morphology

Aspect Total diversity

Abundance or presence of 12
species

Total diversity

Abundance or presence of 7
species

Presence or biomass of 3
functional groups

Maximum
curvature

Presence of 1 species

Presence of 3 species

with average depth being the best performing metric (Figures 5 and
6, Table S4). Positive effects of seafloor relief were reported from
research on average depth (75%), negative effects from research on
average depth (25%) and neutral effects from research on contour
index (100%) and vertical relief (100%) (Figure S3; see Table 5 and
Table S5 for additional details).

6.3.2 | Seafloor complexity

The effects of seafloor complexity on deep sea fishes were highly
variable, with studies reporting either positive (38%) or neutral (62%)
effects (Figure 4). Five terrain metrics were used to index effects of
seafloor complexity on deep sea fish: slope (n = 10), rugosity (n = 4),
TRI (n = 4), fractal dimensions (n = 2) and slope of slope (n = 1), with
slope being the best performing metric (Figures 5 and 6, Table S4).
Positive effects of seafloor complexity were reported from research
on slope (50%), rugosity (50%) and TRI (25%) and neutral effects
from research on fractal dimension (100%), slope of slope (100%),
TRI(75%), rugosity (50%) and slope (50%) (Figure S3; see Table 5 and
Table S5 for additional details).

6.3.3 | Seafloor feature class

The ecological effects of seafloor feature class on deep sea fishes
were mostly positive (75%), but some studies also reported neutral
effects (25%) (Figure 4). Three terrain metrics were used to index
effects of seafloor feature class on deep sea fish: BPI (n = 5), back-
scatter (n = 2) and substratum classification (n = 1), BPI being the
best performing metric (Figures 5 and 6, Table S4). Positive effects
of seafloor feature class were reported from research on backscatter
(100%), substratum classification (100%) and BPI (60%) and neutral
effects were reported from research on BPI (40%) (Figure S3; see
Table 5 and Table S5 for additional details).

Effect Reference

Positive Cameron et al. (2014)

Positive Cameron et al. (2014), lampietro et al. (2008), Monk
et al. (2010), (Pirtle et al., 2017)

Negative Coleman et al. (2016)

Negative Huff et al. (2011), Moore et al. (2010), Pirtle
et al. (2017)

Negative Weijerman et al. (2019)

Positive Monk et al. (2011)

Negative Monk et al. (2010)

6.3.4 | Seafloor morphology

The ecological effects of seafloor morphology were highly variable, with
studies reporting positive (33%), negative (7%) and neutral (60%) effects on
deep sea fishes (Figure 4). Five terrain metrics were used to index effects
of seafloor morphology on deep sea fish: aspect (n = 7), mean curvature
(n = 3), plan curvature (n = 2), profile curvature (n = 2) and tangential curva-
ture (n = 1), with aspect being the best performing metric (Figures 5 and 6,
Table S4). Positive effects of seafloor morphology have been reported from
research on plan curvature (50%), profile curvature (50%), mean curvature
(33%) and aspect (29%), negative effects from research on aspect (14%)
and neutral effects from research on tangential curvature (100%), mean
curvature (67%), aspect (57%), plan curvature (50%) and profile curvature
(50%) (Figure S3; see Table 5 and Table S5 for additional details).

6.4 | Continental shelf

Twenty studies used 12 terrain metrics to investigate the effects of
terrain on continental shelf fishes, including metrics to quantify sea-
floor relief (n = 16), seafloor complexity (n = 9), seafloor feature class
(n = 7) and seafloor morphology (n = 4) (Table S1, Figure 4).

6.4.1 | Seafloor relief

The ecological effects of seafloor relief on fish from continental
shelves were highly variable, with studies reporting positive (11%),
negative (61%) and neutral (28%) effects (Figure 4). Two terrain met-
rics have been used to index effects of seafloor relief on continental
shelf fish: average depth (n = 16) and vertical relief (n = 2), average
depth being the best performing metric (Figures 5 and 6, Table S4).
Positive effects of seafloor relief were reported from research on
vertical relief (50%) and average depth (6%), negative effects were

reported from research on average depth (69%) and neutral effects
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from research on both vertical relief (50%) and average depth (25%)
(Figure S4; see Table 6 and Table S5 for additional details).

6.4.2 | Seafloor complexity

The ecological effects of seafloor complexity on fish from continen-
tal shelves were highly variable, with studies reporting positive (17%),
negative (33%) and neutral (50%) effects (Figure 4). Three terrain met-
rics were used to index the effects of seafloor relief on continental
shelf fish: slope (n = 8), rugosity (n = 2) and TRI (n = 2), with slope
being the best performing metric (Figures 5 and 6, Table S4). Positive
effects of seafloor complexity were reported from research on TRI
(50%) and slope (12%), negative effects from research on TRI (50%)
and slope (38%) and neutral effects from research on rugosity (100%)
and slope (50%) (Figure S4; see Table 6 and Table S5 for additional
details).

6.4.3 | Seafloor feature class

The ecological effects of seafloor feature class on fish from continen-
tal shelves were either positive (29%), or negative (71%) (Figure 4). Two
terrain metrics were used to index effects of seafloor feature class on
continental shelf fish: backscatter (n = 6) and BPI (n = 1), with back-
scatter being the best performing metric (Figures 5 and 6, Table S4).
Positive effects of seafloor feature class were reported from research
on BPI (100%) and backscatter (17%) and negative effects from research
on backscatter (83%) (Figure S4; see Table 6 and Table S5 for additional
details).

6.4.4 | Seafloor morphology

The ecological effects of seafloor morphology on fish from conti-
nental shelves are equivocal (Figure 4). Five terrain metrics have
been used to index the effects of seafloor morphology on continen-
tal shelf fish: aspect (n = 2), mean curvature (n = 2), plan curvature
(n = 2), profile curvature (n = 2) and maximum curvature (n = 1), but
to date all studies have reported inconsistent and neutral, effects
(Figures 5 and 6, Figure S4).

6.5 | Estuary

Seven studies used two terrain metrics to investigate the effects
of seafloor terrain on estuarine fishes, including metrics to quan-
tify seafloor relief (n = 7) and seafloor complexity (n = 1) (Table S1,
Figure 4). The potential ecological effects of seafloor feature class
and morphology have not been tested in estuarine seascapes
(Figures 5 and 6, Figure S5).

6.5.1 | Seafloor relief

The ecological effects of seafloor relief on estuarine fishes were
highly variable, with studies reporting positive (14%), negative (72%)
and neutral (14%) effects (Figure 4). To date, only one terrain metric
(average depth) has been used to index effects of seafloor relief on
estuarine fish, and significant effects of variation in average depth
have been reported in 86% of studies (Figures 5 and 6, Figure S5; see
Table 7 and Table S5 for additional details).

6.5.2 | Seafloor complexity

The ecological effects of seafloor complexity on estuarine fishes have
only been examined in one study, which reported neutral effects of
variation in slope (Miller et al., 2015) (Figures 5 and 6, Figure S5).

7 | IMPORTANCE OF SCALE IN STUDIES
EXAMINING ECOLOGICAL EFFECTS OF
TERRAIN VARIATION

The scale at which bathymetric features are measured can affect the
ecological relevance of terrain metrics (Moudry et al., 2019; Walbridge
et al., 2018). Research articles included in this review have assessed
the ecological effects of terrain on fish assemblages using metrics
that were quantified across a variety of spatial scales (i.e. 0.5-1,000 m
radii) (e.g. Coleman et al., 2016; Sievers et al., 2016). This is also
known to affect the detectability of relationships between fish assem-
blages and terrain features, because fish habitat associations, move-
ments and home ranges are scale-dependent (Coleman et al., 2016;
Knudby et al., 2011; Kuffner et al., 2007; Pittman & McAlpine, 2003).
For example, fish use a variety of habitats throughout their life cycle,
and home ranges can differ fundamentally between species, and in-
deed individuals, with variation in site fidelity and body size (Kuffner
et al.,, 2007; Pittman & Brown, 2011; Pittman et al., 2009).

When insufficient information is available on the home ranges and
movement patterns of fish species or assemblages, a multi-scale ap-
proach for quantifying terrain metrics is most suitable. This is because
species respond to terrain variation differently, using distinct features
at different scales, and these terrain associations can also change with
life-stage progression (e.g. Monk et al., 2011; Pittman & Brown, 2011;
Rees et al., 2018). The spatial scale over which terrain metrics are quan-
tified, might also change among ecosystems, due to variation in both
the complexity and relief of terrain features between consolidated
(e.g. reefs) and unconsolidated (e.g. estuaries) seascapes. The ecolog-
ical effects of terrain features are often reported from snapshots in
time and over relatively small spatial scales (i.e. 100s of metres) in eco-
systems containing complex structures (e.g. coral and rocky reefs) (e.g.
Pittman & Brown, 2011; Rees et al., 2018). Responses of fish to terrain

might, however, operate at large spatial scales (i.e. 1000s of metres)
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in unconsolidated ecosystems where terrain complexity is lower
(e.g. continental shelves, estuaries) (e.g. Farmer et al., 2017; Lathrop
et al., 2006). There are, however, no data that can be used to test
whether the effects of terrain operate at distinct spatial scales in dif-
ferent seascapes. Nevertheless, identifying the scale that fish respond
to seafloor terrain is critical for effective spatial conservation planning
and fisheries management in coastal seascapes (Kuffner et al., 2007;
Pittman & Brown, 2011; Wedding et al., 2019).

8 | HUMANS MODIFY SEAFLOOR
TERRAIN WITH CONSEQUENCES FOR FISH
AND FISHERIES

Coastal seascapes are focal points for urban development, recreation

and fishing and have been profoundly transformed to accommodate

the demands of expanding human populations (Heery et al., 2017;
Mayer-Pinto et al., 2018). In urban seascapes, natural ecosystems,
such as mangroves, saltmarshes and seagrasses, are often degraded,
become fragmented, or have been replaced, by hard artificial struc-
tures, including concrete walls, rock revetments, bridges, jetties and
pontoons (Bishop et al., 2017; Bulleri & Chapman, 2010; Dafforn
et al., 2015). The seafloor of many urban estuaries and coastal seas
has also been modified by dredging to improve shipping, extraction
of sand to replenish sandy beaches, the deposition of dredged sedi-
ments outside shipping channels and the construction of groynes,
breakwaters and other engineered structures (Freeman et al., 2019;
Heery et al., 2017; Macura et al.,, 2019; Sheaves et al., 2014). These
anthropogenic habitat changes significantly impact coastal fish pop-
ulations, particularly when natural shorelines are replaced by engi-
neered structures and when dredging results in the simplification of
estuarine seafloors (Brook et al., 2018; Olds, Frohloff, et al., 2018;

TABLE 5 Summary of the effects of terrain on fish assemblages in deep sea seascapes (see Table S5 for more details)

Terrain metric

category Terrain metric Fish metric

Seafloor relief Average depth Presence, biomass or length

of 7 species

Presence of 3 genera

Abundance, biomass or
presence of 16 species

Seafloor Fractal dimensions Abundance of 1 species
complexity Rugosity Abundance or presence of 7
species
Slope Abundance or size of 11
species
Presence or abundance of 2
species
VRI Total abundance
Seafloor feature Backscatter Abundance or size of 6
class species
Presence of 2 species
BPI Total abundance, diversity
or length
Abundance of 8 species
Substratum Presence of 3 species
classification Presence of 3 species
Seafloor Aspect Abundance or presence of
morphology 13 species

Mean curvature

Plan curvature

Profile curvature

Abundance or presence of 6
species

Abundance or presence of 4
species

Abundance of 1 species
Abundance of 3 species

Abundance of 2 species

Effect Reference

Positive Biber et al. (2014), Chang et al. (2012), Hill
et al. (2017), Loots et al. (2007), Oyafuso
et al. (2017), Péron et al. (2016), Wieczorek
et al. (2014), Yates et al. (2019)

Positive Gomez et al. (2015)

Negative Barcala et al. (2020), Chang et al. (2012), Hill
et al. (2017), Lenoir et al. (2011), Oyafuso
et al. (2017), Parra et al. (2017)

Negative Quattrini et al. (2012)

Positive Biber et al. (2014), Oyafuso et al. (2017), Quattrini
et al. (2012)

Positive QOyafuso et al. (2017), Parra et al. (2017), Quattrini
et al. (2012)

Negative QOyafuso et al. (2017), Quattrini et al. (2012)

Positive Price et al. (2019)

Positive Misa (2013), Oyafuso et al. (2017)

Negative Oyafuso et al. (2017)

Positive Giddens et al. (2019), Leitner et al. (2017)

Positive Leitner et al. (2017)

Positive Parra et al. (2017)

Negative Parra et al. (2017)

Positive Leitner et al. (2017), Parra et al. (2017), Quattrini
etal. (2012)

Negative Oyafuso et al. (2017), Parra et al. (2017), Quattrini
et al. (2012)

Positive Qyafuso et al. (2017), Quattrini et al. (2012)

Negative Quattrini et al. (2012)

Positive Quattrini et al. (2012)

Positive Quattrini et al. (2012)
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TABLE 6 Summary of the effects of terrain on fish assemblages in continental shelf seascapes (see Table S5 for more details)

Terrain metric

category Terrain metric Fish metric

Seafloor relief Average depth Presence of 9 species

Total abundance or diversity

Abundance or presence of 9
species

Vertical relief Presence of 2 species
Presence of 2 species

Seafloor
complexity

Slope Presence of 3 species

Total abundance or diversity

Presence of 2 species
TRI Total abundance or diversity

Seafloor feature Backscatter

class

Abundance of 3 species

Total diversity

Abundance or presence of 12
species

BPI Presence of 2 species

Presence of 1 species

Rochette et al., 2010; Wenger et al., 2017). The impacts of terrain
modification on fish are, however, rarely tested with empirical data.

Features of the seafloor that are characterized by high vertical re-
lief, terrain complexity and morphological variability (e.g. seamounts,
submarine canyons, shoals, pinnacles, ledges and caves) typically sup-
port a diversity of fishes in high abundance (lampietro et al., 2005;
Oyafuso et al., 2017; Pirtle et al., 2017; Rees et al., 2018). The signif-
icance of these “hotspots” for fish assemblages is widely appreciated,
and they are frequently targeted by commercial (e.g. offshore trawlers
that harvest over seamounts), recreational (e.g. line fishers that target
coastal ledges) and artisanal (e.g. woven trap fishers that focus on off-
shore pinnacles) fishers because they are aggregation sites, which con-
centrate desired fish species in great numbers (Borland et al., 2017;
Forcada et al., 2010; Nilsson & Ziegler, 2007; Stamoulis et al., 2018;
Williams et al., 2020). Seafloor terrain features that are characterized
by high relief and complexity also support productive fisheries and
typically yield larger catches (per unit effort) of target species than
areas of comparatively homogenous bathymetry (Bouchet et al., 2017;
Fonseca et al., 2017; March et al., 2014; Salarpouri et al., 2018). Heavy
fishing pressure can reduce the abundance and size of fish popula-
tions, modify the diversity of fish assemblages and lead to trophic cas-
cades that change the condition and functioning of entire ecosystems
(Estes et al., 2011; Jackson et al., 2001; Pauly et al., 1998). Some fish-
ing techniques (e.g. trawling, dredging, anchoring) impact directly upon
the structure of the seafloor and fundamentally alter terrain features,

which can result in the loss of habitat functions and lead to further

Effect Reference

Positive Galaiduk et al. (2017), Lathrop et al. (2006),
Moore et al. (2016)

Negative Hill et al. (2014), Schultz et al. (2014), Smolinski
and Radtke (2017)

Negative Bellido et al. (2008), Cote et al. (1998), Galaiduk
et al. (2017), Giannoulaki et al. (2011), Maravelias
(1999), Moore et al. (2016), Salarpouri
et al. (2018), Stein et al. (2004)

Positive Galaiduk et al. (2017)

Negative Galaiduk et al. (2017)

Positive Moore et al. (2016)

Negative Smith and Lindholm (2016), Smoliriski and Radtke
(2017)

Negative Salarpouri et al. (2018)

Negative Smith and Lindholm (2016)

Positive Auster et al. (2001), Farmer et al. (2017), Schultz
et al. (2015)

Negative Schultz et al. (2015)

Negative Auster et al. (2001), Farmer et al. (2017),
Lathrop et al. (2006), Maravelias (1999), Moore
et al. (2016), Schultz et al. (2015)

Positive Farmer et al. (2017)

Negative Farmer et al. (2017)

declines in fisheries productivity (Bayley et al., 2019; Friedlander
et al., 1999; Gascuel et al., 2016; Kaiser et al., 2002; Puig et al., 2012;
Thrush & Dayton, 2002). These biophysical impacts from fishing are,
however, usually examined independently from the potential ecologi-
cal consequences of terrain modification. Nevertheless, there is some
evidence to show that terrain simplification from destructive fishing
practices is associated with declines in fish diversity and abundance
in some seascapes (e.g. Bayley et al., 2019), but this is rarely linked to
trends in fisheries catches.

Human actions modify the three-dimensional structure of the
seafloor via a multitude of stressors, including urbanization, dredg-
ing and fishing, and this often has negative consequences for fish
assemblages, but some forms of seafloor modification (e.g. the con-
struction of artificial structures, restoration initiatives) can result
in increased seafloor complexity that has positive effects on fish
abundance and diversity (Charbonnel et al., 2002; Gilby et al., 2018;
Morris et al., 2018). The implementation of restoration initiatives
(e.g. oyster reefs), artificial reefs and marine infrastructure (e.g. rock
walls, pipelines, oil platforms, renewable energy structures) can
provide high-relief habitat for a diversity of fish species, and these
structures are often hotspots for fish diversity, especially when
they are located within soft-sediment seascapes with low habitat
diversity (e.g. estuaries, continental shelves) (Folpp et al., 2020;
Gilby et al., 2019; Love et al., 2019; Raoux et al., 2017). There are
many three-dimensional considerations that are incorporated

into the design of restoration units and artificial structures (e.g.
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TABLE 7 Summary of the effects of terrain on fish assemblages in estuarine seascapes (see Table S5 for more details)

Terrain metric

category Terrain metric Fish metric

Seafloor relief Average depth

length of 3 species

Length of 2 species

eco-engineering) (Gilby et al., 2018; Hylkema et al., 2020; Strain
et al., 2018), but the effects of these seafloor modifications on fish
assemblages are seldom linked to alterations to terrain complexity or
morphology, and it is not known whether seafloor terrain surround-
ing artificial or restored fish habitats alters their ecological value for
fish assemblages in coastal seascapes.

The ecological consequences of terrain modification can be mea-
sured and monitored to inform adaptive management, using a variety
of terrain metrics, which index variation in the depth, vertical relief,
morphology and complexity of the seafloor (Goodell et al., 2018;
Sievers et al., 2016; Wedding et al., 2019). Seafloor terrain features
have been derived, and widely mapped, for many marine ecosys-
tems and seascapes (see Section 5), but are rarely used to index the
ecological effects of terrain alterations, on fish assemblages. The
application of terrain metrics for describing, and measuring, the eco-
logical impacts of anthropogenic seafloor modification is a promising
avenue for future research, which should help to streamline deci-
sions in marine spatial planning (Pittman & Brown, 2011; Stamoulis
et al., 2018; Wedding et al., 2019).

9 | TERRAIN FEATURES PROVIDE FOCAL
POINTS FOR SEASCAPE CONSERVATION
AND RESTORATION

In combination with ecological drivers, the two-dimensional configu-
ration and three-dimensional complexity of seascapes strongly influ-
ences the distribution of fish populations and assemblages (Pittman
& Olds, 2015; Wedding et al., 2019). Given the ecological signifi-
cance of these features for fish, their spatial distribution in coastal
seascapes is also likely to influence how fish populations and assem-
blages respond to coastal management, such as marine conservation
and restoration initiatives (Pittman & Brown, 2011; Rees et al., 2018;
Wedding et al., 2019).

Marine reserves, sanctuaries and restoration sites have been
implemented worldwide in an attempt to promote biodiversity,
enhance ecological health and resilience and support the delivery
of ecosystem services, by limiting the impacts of extractive and
transformative anthropogenic stressors (e.g. fishing, urbanization,
eutrophication) (Gaines et al., 2010; Halpern, 2003; Rey Benayas
et al., 2009). Successful no-take marine reserves, and habitat res-
toration projects, can increase the abundance, diversity and bio-
mass of fish and support the productivity of linked fisheries and are

particularly effective when they are sited in locations that optimize

Abundance, density, presence or

Effect Reference

Negative Becker et al. (2017), Le Pape et al. (2003),
Nicolas et al. (2007), Rochette et al. (2010),
Trimoreau et al. (2013)

Positive Meynecke et al. (2008)

two-dimensional spatial connectivity with a diversity of other fish
habitats (Gilby et al., 2018; Magris et al., 2018; Olds et al., 2016). This
is because many species move across seascapes, among habitats and
high-relief habitat features, and these migrations link ecosystems,
both within and between reserves and restoration areas. It is likely
that these movements also depend on the bathymetric characteris-
tics of the seafloor and that they are positively connected to high ter-
rain relief and complexity (Bouchet et al., 2015; Pygas et al., 2020).
Some species might aggregate around these features, whilst others
move regularly between them, and both effects could serve to pro-
mote the performance of local conservation and restoration projects
that are designed and cited to preserve these terrain characteristics
(Pittman & Brown, 2011; Wedding et al., 2019).

To date, three studies have investigated how variation in the
three-dimensional structure of the seafloor might influence the po-
tential responses of fish assemblages to environmental management
actions, and all focused on the performance of marine reserves. The
results of this research show that high terrain complexity (quantified
by both depth standard deviation and rugosity) can enhance reserve
effects on fish diversity and abundance in two coral and rocky reef
seascapes in the Pacific (Bayley et al., 2019; Rees et al., 2018), but not
on a coral reef in the Western Caribbean (Huntington et al., 2010).
These findings are encouraging, but considerably more research is
needed to describe how changes in seafloor terrain affect conser-
vation and restoration performance and to explore opportunities
for integrating bathymetric data, particularly for high-relief terrain
features that concentrate diversity, into spatial prioritization deci-
sions (Ferrari, Malcolm, Neilson, et al., 2018; Fonseca et al., 2017).
Furthermore, bathymetric data have utility as a spatial proxy for the
prioritization of management actions and predicting the spatial dis-
tribution of vulnerable species, in locations where biological data are
poor (Ferrari, Malcolm, Neilson, et al., 2018; Fonseca et al., 2017).

The effects of climate change pose a major challenge to the de-
sign, monitoring and performance of environmental management ini-
tiatives in marine seascapes (Magris et al., 2014; Roberts et al., 2017).
Changes to the global climate are altering the abiotic conditions that
characterize most marine ecosystems (e.g. temperature, pH, sea level),
degrading the ecological condition and resilience of habitat forming
species (e.g. corals, kelps and seagrasses) and terrain features (e.g. as
a consequence of coral degradation) and causing range extensions
and relocations for many species, which must move, either geograph-
ically or topographically (i.e. towards the poles or to greater depths),
to escape extreme environmental perturbation and follow the distri-

bution of their ecological niches (Constable et al., 2014; Lauchlan &
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Nagelkerken, 2020; Nye et al., 2009). For example, climate change has
already had deleterious impacts in coral reef seascapes, resulting in
significant losses of live coral cover, the degradation of reef terrain
complexity and the poleward migration of numerous species (Alvarez-
Filip et al., 2009; Hughes et al., 2003; Leggat et al., 2019; Munday
et al., 2008; Rogers et al., 2018). Prominent terrain features, which are
located in water that is either deeper or at higher latitudes than cur-
rent distributions might, therefore, provide supplementary habitats,
or stepping stones, for migrating species, and could become hotspots
that support high fish diversity and productive fisheries in the future
(Brown & Thatje, 2015; Vestfals et al., 2016). It is also possible that
some terrain features (e.g. rocky headlands, deep channels, continen-
tal slopes, reefs and shoals) might serve as barriers that limit oppor-
tunities for range shifts and, consequently, increase the vulnerability
of some species to climate change (Hollowed et al., 2013; Munday
et al., 2008). To conserve fish species, protect fish habitats and man-
age fisheries under a changing climate, it will be imperative to under-
stand how fish populations and assemblages interact with seafloor
terrain and to identify which types of terrain features provide critical
fish habitats that might facilitate, or obstruct, changes in the distribu-
tion of fish diversity, abundance and biomass in response to climate
change (Goodell et al., 2018; Lenoir et al., 2011; Moore et al., 2009).
Spatial scenarios that model the degradation of coral reef complexity
on habitat suitability for fish species demonstrate the utility of high-
resolution bathymetric maps in forecasting impacts from accelerated
climate change, which can help inform the design of future manage-
ment actions (Newman et al., 2015; Pittman et al., 2011).

10 | FUTURE DIRECTIONS AND RESEARCH
PRIORITIES

The role of seafloor terrain in shaping fish populations and as-
semblages is well documented (n = = 20) for hard-bottom habitats
with high seafloor complexity (e.g. rocky reefs, coral reefs), or soft-
sediment habitats that have been the focus of intensive terrain map-
ping programs (e.g. deep sea, continental shelves) (Ferrari, Malcolm,
Byrne, et al., 2018; Pittman & Brown, 2011; Wedding et al., 2019). By
contrast, much less is known about the effects of seafloor terrain on
fish assemblages in shallow soft-sediment seascapes; we found only
seven papers for estuaries and there has been no work on nearshore
waters, such as the surf zones of sandy beaches, that are difficult
to map with conventional techniques due to the harsh hydrody-
namic activity (Borland et al., 2017; Bradley et al., 2017; Henderson
et al., 2019; Mosman et al., 2020). Thus, focusing on data-deficient
seascapes in the coastal zone, particularly estuaries and surf zones,
is timely (research priority 1, Table 8).

Fish respond to terrain features at a variety of spatial scales,
and this varies between species, and with changes in life stages and
movement capabilities, which necessitates the adoption of a multi-
scale approach in fish—terrain research (Pittman & Brown, 2011;
Rees et al., 2018; Sievers et al., 2016). The scale over which terrain

features influence fish assemblages might also vary with changes in
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the structure and complexity of the seafloor, for example fish might
respond to terrain differently in coral reef and estuarine environ-
ments, but there is no data that can be used to measure whether
the ecological effects of terrain operate at distinct spatial scales in
different seascapes (research priority 2, Table 8).

Fish move through seascapes to feed, breed and disperse, and
these migrations are partly determined by the spatial configuration of
habitats (i.e. seascape context), which shape the distribution, abun-
dance and diversity of fish assemblages in most seascapes (Olson
et al., 2019; Ortodossi et al., 2019; Perry et al., 2018). Seafloor ter-
rain can also modify the movement of fish species between different
habitats, and these properties likely interact with seascape context
to determine the spatial distribution of fish populations (Moore
et al., 2011; Sekund & Pittman, 2017; Wedding et al., 2019). We
do not know, however, whether variation in the three-dimensional
properties of the seafloor influence the effects of two-dimensional
seascape context, and connectivity, on fish assemblages (research
priority 3, Table 8).

Seafloor terrain features are commonly utilized as foraging areas,
resting sites and spawning locations by numerous fish species. Fish
move among these as they grow and mature, and as their resource
requirements change, and may use particular terrain features as step-
ping stones (e.g. high-relief pinnacles) or dispersal corridors (e.g. deep
channels) (Engelhard et al., 2017; Green et al., 2015; Olds et al., 2016).
The movement of many fish species has been linked to prominent
high-relief features in some seascapes (e.g. deep channels in estuar-
ies, seamounts in the deep sea, rocky shoals in continental shelves)
(Holland & Dean Grubbs, 2008; Hondorp et al., 2017; Siceloff &
Howell, 2013), but these movements are rarely linked to terrain (but
see Fabrizio et al., 2013; Huff et al., 2011), and it is not clear whether
the location and characteristics of terrain features shape the move-
ment of fish across seascapes (research priority 4, Table 8).

Some terrain features (i.e. unconsolidated sand bars and chan-
nels, rocky shoals and banks) are thought to be important nursery
sites for some fish species (Pirtle et al., 2017; Rochette et al., 2010;
Trimoreau et al., 2013). Effective nursery habitats enhance the
abundance, growth and survival of juvenile fish and contribute a
greater biomass of these individuals to adult populations, which re-
side elsewhere in the wider seascape (Beck et al., 2001; Whitfield
& Pattrick, 2015). There are, however, no data that can be used to
determine the ecological values of prominent terrain features as
nursery habitats for fish (research priority 5, Table 8).

Fish perform a diversity of ecological functions (e.g. predation,
herbivory, scavenging, nutrient cycling) that are critical for maintain-
ing the ecological health, condition and resilience of ecosystems to
disturbance (Catano et al., 2015; Henderson et al., 2020b; Martin
et al.,, 2018; Ruttenberg et al., 2019). Variation in seafloor terrain
can modify the trophic composition of fish assemblages in most sea-
scapes and alter the spatial distribution of many fish trophic guilds
(e.g. piscivores, herbivores, corallivores) (Ferrari, Malcolm, Byrne,
et al., 2018; Pittman et al., 2009; Purkis et al., 2008). It is not clear,
however, whether these structural effects of terrain complexity

on fish assemblages have functional consequences that shape the



726

BORLAND ET AL.

s -_—
FISH and FISHERIES e

spatial distribution of key ecological processes (e.g. predation, her-
bivory) (research priority 6, Table 8).

High relief, and complex, terrain features (e.g. pinnacles,
ledges, caves) often support a diversity of apex predators because
they provide important resting points on long-distance migrations,
aggregation sites for spawning and abundant feeding opportuni-
ties (Farmer et al., 2017; Kuffner et al., 2010; Morato et al., 2010;
Pirtle et al., 2017). It is likely that these higher-order predators
also exert strong top-down effects in local ecosystems, via both
direct predation and elevated predation risk effects, which alter
the distribution, abundance and behaviour of their prey and cas-
cade through food webs to shape the composition of benthic
assemblages (Atwood et al., 2015; Baum & Worm, 2009; Estes
et al., 2011). We do not know, however, whether the abundance
and diversity of apex predators is linked to variation in the type, or
characteristics, of undersea terrain features, or whether changes
in seafloor relief and complexity modify the spatial distribution of
predation events, and the intensity of trophic cascades (research
priority 7, Table 8).

In urban seascapes the seafloor is frequently heavily modified and
fragmented by anthropogenic activity (e.g. shoreline hardening, dredg-
ing, trawling, fishing, the construction of groynes and breakwaters),
which reduces the quality, and changes the structure, of terrain fea-
tures (Freeman et al., 2019; Macura et al., 2019; Sheaves et al., 2014). It
is plausible that the modification and fragmentation of seafloor terrain
features can have ecological consequences for the spatial distribution
and composition of fish assemblages (e.g. Bayley et al., 2019; Kaiser
et al., 2002; Rochette et al., 2010), but this hypothesis has rarely been
tested with empirical data (research priority 8, Table 8).

There are limited data that can be used to describe the ecological
effects of seafloor terrain on fish conservation, or the restoration of
fish habitats. Only three studies have investigated the conservation
benefits of terrain for fish, and results are inconclusive, indicating
positive effects of complex terrain features on rocky reef reserves
(Rees et al., 2018), and either positive (Bayley et al., 2019), or neutral
(Huntington et al., 2010), effects of terrain complexity in reserves on
coral reefs. Variation in the structure and complexity of the seafloor
is also likely to influence the effectiveness of habitat restoration for
fish (Gilby et al., 2018), but this hypothesis has not been examined.
More empirical data are, therefore, required to identify if seafloor
terrain has conservation and restoration benefits for fish in coastal
seascapes (research priority 9, Table 8).

Coastal seascapes are under threat from the increasing effects
of climate change (Harley et al., 2006; Magris et al., 2014; Roberts
et al., 2017), and recent research provides evidence that many species
are already relocating to deeper habitats, or towards the poles, to track
the abiotic conditions that characterize their ecological niches (Brown
& Thatje, 2015; Lauchlan & Nagelkerken, 2020; Vestfals et al., 2016). It
is also likely that as species alter their spatial distributions, some terrain
features may provide supplementary habitats and facilitate migration,
whilst others might obstruct the expansion of species home ranges
(Hollowed et al., 2013; Lenoir et al., 2011). The potential for prominent

terrain features to serve as stepping stones and sinks for climate driven

range extensions will impact our capacity to effectively manage marine
ecosystems, and data are therefore needed to identify terrain features
that might serve as focal hotspots for conservation and restoration (re-

search priority 10, Table 8).

11 | CONCLUSIONS

Variation in seafloor terrain is associated with significant, and wide-
spread, ecological effects on fish populations and assemblages.
Spatial patterns in fish diversity and abundance are linked to bathym-
etry on coral and rocky reefs, in the deep sea, over continental shelfs
and in estuaries, and changes in the distribution of fish assemblages
are most strongly correlated with variation in the average depth,
slope, rugosity and aspect of terrain features. The ecological signifi-
cance of these terrain properties for fish does, however, differ among
seascapes, as does the spatial scale of their influence on fish popula-
tions and assemblages, and this likely reflects variation in seafloor
complexity. Despite the clear importance of terrain features for fish,
research is needed to better describe how changes in seafloor relief,
complexity, class and morphology combine to shape the distribution,
composition and functioning of fish assemblages in most seascapes.
There is a reasonable to good coverage of studies on the effects of
terrain variation on fish in coral and rocky reefs, but soft-sediment
seascapes are either data-poor (e.g. estuaries) or completely ne-
glected (e.g. surf zones). Humans have substantially modified the ba-
thymetry of many seascapes, via cumulative impacts resulting from
urbanization, dredging and fishing. Yet, it is largely unknown whether
and how, multiple anthropogenic stressors on seafloor terrain inter-
act to affect the way fish species use coastal seascapes. The potential
significance of bathymetric variation for conservation and restora-
tion performance is also rarely tested with empirical data, despite
the fact that these management actions typically restrict, or restore,
actions that modify terrain complexity. A clearer understanding of
how seafloor terrain shapes fish assemblages and data to describe
whether these relationships change with seafloor modification, con-
servation and restoration is essential for optimizing marine spatial

planning and improving fisheries management.
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TABLE 8 Priority questions for research on the effects of terrain
on fish assemblages. References provide examples of methods that
could be used to investigate each question

Priority research questions

1. Data-deficient ecosystems: how does terrain variation shape fish
assemblages in soft-sediment seascapes that are under-sampled
(e.g. estuaries, coastal seas) (e.g. Becker et al., 2017).

2. Spatial scale: do the effects of seafloor terrain operate at distinct
spatial scales in different seascapes (e.g. Pittman & Brown, 2011)?

3. Seascape context: does seafloor terrain modify the importance of
spatial context between ecosystems (e.g. mangroves, seagrasses,
coral reefs) for fish (e.g. Sekund & Pittman, 2017)?

4. Fish movement: does terrain determine how fish move
throughout seascapes and what seafloor features are pivotal in
shaping fish movements (e.g. Huff et al., 2011)?

5. Nursery habitats: which terrain features are most important for
creating favourable conditions for the recruitment, survival and
growth of juvenile fish (e.g. Trimoreau et al., 2013)?

6. Functional ecology: does seafloor terrain change the context that
species perform different ecological functions (e.g. scavenging,
herbivory, predation) (e.g. Catano et al., 2015)?

7. Predators: are apex predators consistently associated with
particular terrain features and does this correspond to changes in
the trophic and assemblage composition of fish (e.g. Weijerman
et al.,, 2019)?

8. Urbanization: how do multiple anthropogenic stressors (i.e.
dredging, shoreline armouring) change the ecological value of
terrain features for fish (e.g. Rochette et al., 2010)?

9. Marine reserves: how do fish respond to terrain within a
conservation context and can seafloor terrain enhance the
performance of marine reserves for fish (e.g. Rees et al., 2018)?

10. Climate change: are there terrain features that could provide
supplementary habitat, or obstructions, for species that alter their
spatial distributions in response to climate change (e.g. Lenoir
etal, 2011)?
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