Science of the Total Environment 869 (2023) 161670

Contents lists available at ScienceDirect

Science o e
Total Environment

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Ecosystem services in connected catchment to coast ecosystems: Monitoring R)

to detect emerging trends ke

Christopher J. Brown **, Chantal Saint Ange b Rod M. Connolly?, Syezlin Hasan b Sue Jackson®,
Joseph M. McMahon °, James C.R. Smart "

@ Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
Y Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia

HIGHLIGHTS GRAPHICAL ABSTRACT

Indicators of ecosystem services need to

S i FisheryCatch  Can we detect trends in
be tested for their ability to detect change. Greenness (NDVI)  Pasture Biomass PerUnitEffort . .
: ald indicators of ecosystem
» We developed an approach to assess per- 0 el ! 50 " X p
. . . - ¥ - 40
formance of ecosystem service indicators. & 1A S LRSS A | I ; Services across connecte
= 20-
« In a catchment-to-coast system, higher in- N\ = catchments?
dicator values associated with river flow. 1. Structural | Catchment condition
+ Emergence times show the indicators take equation ) M
decades to show human impacts. m°d:.| 2l Predict g . 3. Predict
. . combines 5 = A
+ Management should not rely on indicators . bounds of = :nmedf:r
. < natural % 50 (e
alone to anticipate change. p;edn:t . : et % emerge from
change in . Streamflow each 5 background
catchment 1000 indicator variation
condition 500
250 0
1990 2000 2010 0 - 20 E
Year
ARTICLE INFO ABSTRACT
Editor: Paulo Pereira There is an increasing need for long-term monitoring of ecosystems and their services to inform on-ground manage-
ment. The supply of many ecosystem services relies on connections that span multiple ecosystems. Monitoring the un-
Keywords: derlying condition of interconnected ecosystems is therefore required to track effectiveness of past interventions and
Lates calcarifer

identify impending change. Here we test the performance of indicators of ecosystem services with the aim of identify-
ing the time-scales over which indicators of ecosystem services responded to change. We chose a case-study of a catch-
Estuary ment in Northern Australia, where water resource development is a threat to the river flows that support vegetation
Emergence time growth and the life-cycle of coastal fishery species. We developed a novel approach to performance testing that
Ecological monitoring drew on state-space modelling to capture ecological dynamics, and structural equation modelling to capture covaria-
Ecosystem capacity tion in indicator time series. We first quantified covariation among three ecological indicators that had time-series
data: pasture biomass, vegetation greenness and barramundi catch per unit effort. Higher values of all indicators oc-
curred in years with greater river flow. We then predicted the emergence times for each indicator, as the time taken
for a trend in an indicator to emerge from the background of natural variation. Emergence times were > 10 years in
all cases, quantified at 80 % and higher confidence levels. Past trends and current status of ecosystem service flows
are often used by decision makers to directly inform near-term actions, particularly for provisioning services (such
as barramundi catch) due to their important contribution to regional economies. We found that ecological indicators
could be used to assess historical performance over decadal timespans, but not as short-term indicators of recent
change. More generally, we offer an approach to performance testing of indicators. This approach could be useful
for quantifying timescales of ecosystem response in systems where cross-ecosystem connections are important.
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1. Introduction

The supply of ecosystem services can depend on ecological processes
that operate across multiple ecosystems (Barbier et al., 2011; Lowe et al.,
2022). Interconnections among ecosystems are facilitated by the movement
of plant propagules, migration of animals and the transport of physical mat-
ter in air and water. In particular, the flow of water from catchments to
coast creates many challenges for the management of human activities
that may impact upon the supply of ecosystem services (Alvarez-Romero
et al., 2011). For example, the capture of water in dams for agricultural,
power or municipal uses upstream interferes with the downstream supply
of ecosystem services all the way to the ocean, potentially affecting ecosys-
tem inputs to agriculture on floodplains, the productivity of estuarine and
coastal marine fisheries (Gillanders et al., 2011) and the capture of carbon
in estuarine habitats (Macreadie et al., 2017). Therefore, monitoring of
multiple ecological indicators that together span interconnected systems
is important to characterize the processes that support ecosystem services
in catchments and inform the management of human activities. This mon-
itoring of ecological processes plays multiple roles in management deci-
sions. First, it informs decision makers about trends in downstream
ecosystem processes so they can respond proactively to address changes
in hydrology upstream. Second, it helps to detect change in ecosystems
and with attribution to management actions. Finally, monitoring can hold
decision makers accountable for actions that affect the integrity of ecosys-
tems downstream (Stevenson et al., 2021).

A challenge for monitoring programs that span a whole catchment is to
attribute trends in ecological processes to changes in water flow, because
the causes of changes in water flow are separated in time and space from
their impacts (Alvarez-Romero et al., 2011; Brown et al., 2019). Interan-
nual variation in flow linked to long-term climate cycles (e.g. El Nino south-
ern oscillation) is common in many systems, and this variation can mask
long-term trends caused by climate change or human interventions. Moni-
toring design, such as ‘before/after, control/impact’ approaches can be
used to resolve the attribution problem (Underwood, 1992). However, in
whole of catchment monitoring programs, commonly there are no controls
and monitoring programs are not designed with a specific intervention,
such as water extraction for irrigation, as the focus. In such cases we need
to know how long underlying trends in hydrology/flow will take to mani-
fest as trends in the ecological indicators.

The testing of indicator performance, where the ability to detect trends
in indicators is explored through simulation models, is a popular method in
fisheries science for evaluating indicators (Fulton et al., 2005; Blanchard
et al., 2014; Nickols et al., 2019), but it is only just beginning to be applied
to ecosystem indicators (Collen and Nicholson, 2014; Watermeyer et al.,
2021). Performance testing involves constructing a system model that rep-
resents the fundamental system dynamics, and then running simulations
that represent the stages of underlying trends, data collection and interpre-
tation of data by decision-makers (Fulton et al., 2005). Simulations are run
multiple times so that we can define error bounds on the probability of a
trend of a given magnitude being detected with a given level of confidence.
This testing can be evaluated through univariate indicators, such as binary
indicators of whether a threshold value is reached, or via power analyses
that consider the sensitivity and specificity of indicators for different deci-
sion thresholds (i.e. risk of missed detections versus false alarms, see
Mapstone, 1995).

The development of performance testing methods in fisheries science
and biodiversity monitoring has run parallel to the development of the
emergence time concept in climate studies (Hawkins and Sutton, 2012).
Climate models can be used to quantify when human-induced trends in cli-
mate caused by greenhouse gas emissions emerge from background varia-
tion in climate. Thus, models of trends underpin the attribution of climate
trends to human causes and provide an easily communicable statistic
about lags between human actions and detection of changes in the system
under study. The emergence time concept could also be applied to the test-
ing of indicators for interconnected catchment ecosystems, where high in-
terannual variation in river flows may mask long-term trends in multiple
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downstream ecological processes. However, development of such perfor-
mance testing approaches is often held back by the requirement to develop
complex system models. Developing system models for catchment to coast
systems is a particularly complex task because the modelling needs to span
multiple disciplines (Brown et al., 2019). Catchment to coast systems
models are therefore rare. Simpler approaches to performance testing
would facilitate more widespread testing of indicators and inform how
managers can use indicators.

The suitability of indicators for their intended purpose is a widespread
issue that affects conservation monitoring at all scales from global targets
in the Convention on Biological Diversity (Nicholson et al., 2021) to local
scale decision making (e.g. Jakobsson et al., 2021). Here we develop an ap-
proach to quantifying emergence time of multivariate catchment processes.
We use a case-study of a riverine-estuarine-coastal marine system in the
Gulf of Carpentaria in tropical northern Australia. The Mitchell catchment
is earmarked for water resource development, which may provide agricul-
tural benefits, but will also disrupt freshwater flows (CSIRO, 2018) and im-
pact the downstream ecosystems and fisheries that depend on them
(Turschwell et al., 2019; Broadley et al., 2020). Similarly, climate change
is causing long-term shifts in weather patterns and flows in the region
(Karim et al., 2015)

We aimed to test commonly used monitoring indicators for their ability
to detect change in the interconnected ecosystems of the Mitchell catch-
ment. We sought to fit a process model that quantified the relationship
among indicators and that allowed the effect of uncertainty within those in-
dicators to be assessed (Objective 1). From this model we inferred natural
bounds of variation for each indicator (Objective 2). We finally quantified
the sensitivity of indicators to long-term trends in water flow via their emer-
gence time from background variation (Objective 3). The emergence time
for each indicator represents when the impacts of change will become ap-
parent to human observers (Hawkins and Sutton, 2012).

2. Methods
2.1. Indicators for the Mitchell catchment

The Mitchell catchment covers an area of over 72,000 km? and dis-
charges into the Gulf of Carpentaria (Fig. 1). This catchment is subject to
highly seasonal flow regimes. During the dry season many of the ephemeral
rivers become disconnected water holes and in the wet season a large area
of the floodplain becomes inundated. There is high inter-annual variability
in rainfall, which drives inter-annual variation in flow and floodplain pro-
ductivity (Ndehedehe et al., 2021).

We focused on indicators of capacity to supply ecosystem services that
included (i) fish biomass that supports barramundi (Lates calcarifer) catch
in a commercial fishery and subsistence harvesting by Indigenous
Australians, and (ii) pasture biomass that supports commercial livestock
production. In particular, the catadromous barramundi life-cycle exem-
plifies cross-system dependence (Barramundi migrate from freshwater to
estuaries to spawn, Milton and Chenery, 2005). Variability in barramundi
biomass may be correlated to variability in pasture growth on flood plains
which supports livestock production, because both are dependent on re-
gional cycles in river flow.

Time-series data (Table S1) were collected for the ecosystem service ca-
pacity indicators. Stream flow, a hydrological indicator, was included as a
driver of ecosystem services. Stream flow data was sourced from the North-
ern Australia Water Resource Assessment.

Yearly data on barramundi (Lates calcarifer) catch and commercial fish-
ing effort were used to derive an indicator of the barramundi population
size. Data were sourced from the Queensland Fisheries ‘QFish’ data cube
(State of Queensland Department of Agriculture Fisheries and Forestry,
2018) for the Mitchell region. Barramundi are an important fishery species
in northern Australia, and they are caught in commercial, Indigenous, rec-
reational and charter fisheries. They also play an important cultural role
within the ecosystem (Jackson et al., 2012). Barramundi spawn in estuar-
ies, with juveniles then moving upstream to freshwater habitats, returning
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Fig. 1. Location of the case-study catchment.

to saltwater as adults (Robins et al., 2005). Seasonal floodplains provide benefit growth and survival (Robins et al., 2005; Balston, 2009; Roberts
connections to off-stream freshwater habitats as well as highly productive, etal., 2019; Leahy and Robins, 2021). Barramundi opportunistically exploit
short-term habitats. Individuals residing in upstream habitats return to the multiple aquatic habitats at different stages of their life cycle. Therefore, if
estuary and saltwater to spawn as adults. Barramundi are impacted by flow connectivity between these different ecosystem assets is diminished, this
regimes through changes in connectivity throughout the catchment which can impact their harvestable biomass in following seasons. Barramundi
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catch per unit effort (CPUE) is a suitable indicator of the interlinked aquatic
ecosystems, because barramundi are a near-apex predator in the system.
Their production aggregates multiple trophic levels, and they depend on
persistent freshwater in lagoons and waterholes to survive dry periods
(Robins et al., 2005).

Normalized difference vegetation index (NDVI) is an indicator of vege-
tation greenness (Pettorelli et al., 2005). We included NDVI because it may
be an alternative indicator for the ecosystem service of supply of forage.
NDVI was obtained from the Bureau of Meteorology (Table S1). Pasture
biomass was included as an indicator of supply of forage for grazing. Pas-
ture biomass was obtained as the predicted output from Queensland
Government's AussieGRASS model (State of Queensland Department of
Environment and Science, 2021). AussieGRASS is a pasture production
and water balance model that covers the Australian continent (Carter
et al., 2000) and is run with daily climate data (Jeffrey et al., 2001).
AussieGRASS also uses stream flow as input data and NDVI as one of several
calibration datasets; however, since other variables (i.e. rainfall, soil type,
temperature and local grazing pressure) are also inputs to AussieGRASS,
the relationship between pasture biomass and stream flow is not determin-
istic.

2.2. Objective 1: quantify interrelations among condition indicators

We combined two common modelling approaches to develop a model
of indicator interrelationships (Fig. 2). The first was a state-space model
of barramundi catch per unit effort (CPUE) dynamics (Millar and Meyer,
2000). State space models are widely applied for modelling fisheries dy-
namics, informing on reference points for fisheries management and for es-
timating environmental effects on fishery dynamics (Aeberhard et al.,
2018), but have rarely been applied to model whole ecosystem change
(Auger-Méthé et al., 2021). The state-space model was used to fit catches
(a measure of ecosystem service flow), then estimate latent states for
stock biomass (a measure of ecosystem capacity to deliver services) and var-
iation in population growth (Fig. 2).

The second modelling approach was a structural equation model that
related the observed indicator variables to a latent (unobserved) state,
which we termed the ‘catchment condition index’ (Fig. 2). Structural equa-
tion models can represent correlations among observed indicators and a la-
tent state. The observed variables are then interpreted as outcomes of an
underlying causal process, the latent state (Grace et al., 2010). We followed
earlier literature in interpreting this latent state as the condition of the
interlinked ecosystems of the catchment (Brown and Hamilton, 2018).
We linked the two modelling approaches by assuming that the observed in-
dicators of NDVI, pasture biomass, and CPUE were all dependent on an un-
observed catchment condition index. Catchment condition, in turn, was
assumed to be driven by freshwater flow (Fig. 2).

! Ecosystem service use

Live stock
production Catch

cosystem
|1 service capacity

Legend
/@ Indicators (observed)
O Latent variables (inferred)

{["] Environmental driver

Fig. 2. Overview of the approach showing the measured variables, the latent
variables and the scope of the model.
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The state space model had the form:

B
B, = (Bt,1+rBt,l<1— [K1>—Ct>ut (1)

In (CPUE,) ~ normal( In (¢B,), 0""F) @)

where B, was the latent estimate of barramundi biomass, t were yearly time-
steps, r was the intrinsic growth parameter, K was the carrying capacity, C,
was catches, g was the catchability coefficient, u, were process errors and
0“PYE was the standard deviation for CPUE errors (we use superscripts to
demarcate parameters relating to different variables, subscripts to demarcate
indices). B; was assumed a fixed fraction of 20 % of the estimate of K (Millar
and Meyer, 2000; Streipert et al., 2019). We tested the effects of the assump-
tion that B; was 20 % of K and that q was constant by repeating analyses with
q increasing by 1 % per annum and with B; = 50 and 80 % of K.

The state space model was linked to the structural equation model
through a dependence of the process errors on a latent variable that we
interpreted as the catchment condition index:

In (u,) ~ normal(B"v,, 0") 3)

where 8 was a regression coefficient and v, was the latent condition index.
The process errors were assumed to be log-normally distributed so they had
a multiplicative effect on biomass. The natural log formulation is consistent
with population theory because changes in survival have multiplicative ef-
fects on population size (Hilborn and Walters, 2013).

The state-space model assumed a one-year lag between flow and
changes in barramundi biomass. Flow likely impacts barramundi catches
and biomass at a number of different time-scales, as described above, but
we assumed a one-year lag for simplicity. To verify that the data did not
suggest multi-year lags we confirmed that residuals from the modelled
CPUE relationship were not autocorrelated.

NDVI and pasture biomass were related directly to the condition index:

v, ~ normal(a’ + v, 0”) 4

where y, refered to either NDVI or pasture biomass and @ is the intercept.
We used a normal (not log-normal) distribution for NDVI and pasture bio-
mass because this model assumption best fit the data and we were not
modelling population growth for these indicators.

NDVI and pasture biomass were mean centred and standardized prior to
analysis. We note that it would be theoretically possible to integrate the
AussieGRASS model directly into the SEM, however for our purposes this
was unnecessary because there were no dynamic feedbacks from pasture
production to the other SEM variables.

Finally, catchment condition was estimated as a regression on freshwa-
ter flow:

v, ~ normal(f’ In (F,), 1) 5)

where F, was freshwater flow and the standard deviation was arbitrarily set
at 1, because v, is scale invariant. We used the natural log of flow to reduce
the leverage that extremely high flow years had on condition. Representing
flow in natural log also reflects a hypothesis that the sensitivity of ecologi-
cal condition to flow decreases at high flows.

The NDVI data started in 1992, so the condition index was estimated
only from flow, CPUE and pasture biomass in 1990 and 1991. The model
also interpolated the missing NDVI values. We presented results as marginal
predictions for each data type and the latent states for barramundi biomass
and catchment condition.

We obtained parameter and prediction probabilities within a Bayesian
estimation framework. The model was estimated with the STAN program-
ming language, implemented from the R program with the rstan package
(Stan Development Team, 2020). We set priors based on prior information
for each parameter and prior expectations for the variance in NDVI and
CPUE. It was also important to set weakly-informative priors to aid
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algorithm convergence and identification of parameters. In particular, the
latent state v, and the f3 coefficients can ‘sign-switch’, e.g. —v,and +f are
exchangeable with +u, and - (Hui et al., 2015). Sign-switching makes in-
terpretation of the posteriors challenging, because the interpretation of one
parameter depends on the sign of another parameter. Priors and algorithm
settings were chosen consciously, rather than using software defaults
(Table S2, supplementary material sections 1.1 and 1.2).

The model was verified for its fits to the data and through simulation
testing. The model assumptions were checked by confirming independent
normally distributed residuals, where residuals were defined as the ob-
served values of CPUE, NDVI and pasture biomass minus their posterior
predicted median value. Residual independence was confirmed by plotting
the auto-correlation function with the R function ‘acf’ (base R, R
Development Core Team, 2019). Further, we checked the conditional inde-
pendence assumptions implied by the SEM by calculating the cross-
correlation of residuals across indicators to confirm the model had captured
all dependencies between indicator values (Grace et al., 2012). Finally,
since we had some missing data, we verified the robustness of parameter es-
timates to missing data with a simulation study. We created 50 randomised
flow time-series; simulated values of NDVI, pasture biomass and CPUE from
these timeseries; and then refit the model. We repeated these steps where
the first 0, 5, 11 and 15 years of the NDVI data were missing in the model
fitting. We could then compare the estimated parameter values to the
true values from the simulation (supplementary material section 1.4).

We determined the strength of the relationship between each indicator
variable, catchment condition, and flow as the direct effect of condition on
the pasture biomass and NDVI indicators (simply the marginal posterior
distributions for ) and the total effect of flow (in natural log) on the con-
dition index =p"f. For barramundi we calculated the direct and total effect
sizes on surplus production, where surplus production was defined as the
sum of change in biomass and catch (i.e. SP, = B, — B,_1 + C,). We then
plotted the total effect of a 1 S.D. increase in the log of flow (=5.6 times in-
crease in flow) on each indicator and the direct effect of a one S.D. change
in catchment condition on each indicator (formulas for effects were derived
in supplementary material section 1.5). We also calculated one-tailed prob-
abilities that the total effect was greater than zero. We note that given the
prior choices (Table S2) the prior probability that . >0 was 0.5.

2.3. Objective 2: bounds of natural variation

We used the fitted model to define the bounds of natural variation for
each indicator. The bounds were defined to represent the typical ranges
of indicator values given historical variation in flow. The historical condi-
tion of flow was characterized by fitting an autoregressive moving average
model to the historical flow series (1990-2015), then simulating 1000 ran-
dom flow series from the fitted model. The optimal model for simulating
flow was chosen with the AIC and had an autoregressive order = 6 and
moving average order = 3. Flow models were fit with the ‘Arima’ function
and simulated with the ‘simulate’ function from the forecast’ R package
(Hyndman and Khandakar, 2008). To define bounds for the indicators we
then simulated their values from the fitted SEM, where the SEM took
each of the 1000 flow series as an input. For NDVI and pasture biomass,
the bounds were defined as the marginal probability quantiles integrating
over measurement noise (also called predictive intervals) and the flow sim-
ulations. The bounds for barramundi CPUE also depended on biomass, so
for simulations of barramundi we assumed a biomass fixed at the biomass
that gives maximum sustainable yield (B; = 50 % of By). This is a common
reference point used in fishery management (Mace, 1994). For the simula-
tions of bounds, we also assumed that biomass was initially at the biomass
that gives maximum sustainable yield, doing so avoided transient dynamics
affecting the simulations.

2.4. Objective 3: emergence time for indicators

We then estimated each indicator's emergence time, given an assumed
long-term trend in flow. Environmental change is causing long-term
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changes in flows in the region (Karim et al., 2015), which may affect inter-
connected catchment ecosystem services, including barramundi catches
and pasture growth. Thus, our scenarios represent the ability to detect
this long-term change under an assumed trend magnitude. We simulated
flow series and added a linear declining trend in flow, as an example of a
situation where environmental change or water resource development
could increasingly constrain ecosystem services. We simulated 1000 itera-
tions of 30-year flow time-series for each trend in flow and then predicted
values of all indicators. We then defined emergence times as the time
taken for the mean indicator value to cross the lower 5 %, 20 % and 40 %
probability quantiles. The different quantiles represent different degrees
of confidence for emergence, the lower the quantile the greater the confi-
dence the trend has emerged from background variation. This quantiles-
based approach is analogous to a power analysis in frequentist statistics,
where a trend is refitted to simulated data to test a model's ability to detect
change. In our case we used a Bayesian analysis, which allowed us to prop-
agate uncertainty from parameter estimates through to the posterior, so
refitting was not required.

Code and data to repeat the analyses is available at: https://github.
com/cbrown5/ecological-condition-latent-model.

3. Results
3.1. Objective 1: interrelationships among indicators

Verification of the model fits indicated that there was no autocorre-
lation in the residuals for the fitted values for any of the indicators
(Fig. S1). Overall, the R? was highest for log CPUE (0.91), moderate
for NDVI (0.43) and lowest for pasture biomass (0.09) (Fig. S2). Sensi-
tivity analyses in which we varied the assumptions regarding constant
catchability, the initial biomass ratio and higher fishing effort indicated
the main results were robust to alternative assumptions (Figs. S2, S3 and
S4). Consequently, below we present only the main results assuming sta-
ble catchability and an initial biomass ratio of 20 %.

Model fits indicated an overall increase in CPUE from 1990 to 2012,
and then a slight decrease from 2012 to 2015. NDVI and pasture bio-
mass had no long-term trends, but varied year-to-year (Fig. 3). NDVI
and barramundi surplus production were strongly related to river flow
(Fig. 4A, pr(B”f’.) > 0 = 0.99 and 0.96 respectively), whereas pasture
biomass had a somewhat weaker relationship with river flow (Fig. 4A,
pr(B“f’.) > 0 = 0.93). Therefore, the catchment condition variable pri-
marily captured the correlation between flow, NDVI and barramundi
biomass change (Fig. 3E). Catchment condition showed peaks in 1991,
1998-99 and around 2010 that were driven by increased flow in those
years. But overall catchment condition did not vary strongly from the
long-term average (95 % CIs generally overlap zero). Barramundi bio-
mass was predicted to have increased from 0.2 to 0.5 as a fraction of
By over 1990-2012, and to have declined to ~0.3 by 2015. The decline
in 2012-2015 corresponded to a decline in catchment condition and a
decline in flow.

A simulation study where we varied the number of years of missing
NDVI data suggested the model's predictions for the variables and catch-
ment condition were not biased by missing data, but the predictions for
NDVI were less accurate with a greater amount of missing data (Fig. S5).
Coverage by the 95 % C.Ls was always >0.95 (Table S3). The parameter es-
timate for the effect of catchment condition on NDVI was most affected by
missing data, and the parameter estimates for pasture biomass and barra-
mundi biomass were least affected.

3.2. Objective 2: bounds of natural variation

The bounds for each indicator had broad intervals (Fig. 5). For CPUE the
90 % probability interval ranged from 17 to 70 t per fishing year, compared
to a historical range of 19-50 t per fishing year. For NDVI the 90 % proba-
bility interval ranged from 0.19 to 0.26 units, compared to a historical
range of 0.20-0.30 units. For pasture biomass the 90 % probability interval
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Fig. 3. Model fits to data for CPUE (A), NDVI (B); pasture biomass (C); flow (D) and the estimated latent variables for catchment condition (variable v, in the model) (E) and
barramundi biomass relative to its carrying capacity as estimated by the model (F). For model predictions, lines show median and shaded areas show 95 % CIs. Darker areas in
E-F indicate 50 % ClIs. The solid horizontal line in (E) indicates the mean value, in (F) it indicates 50 % carrying capacity.

ranged from 1970 to 2998 units, compared to a historical range of
2000-4134 units. This broad variation in the probability bounds was
caused by the high variation in year-to-year flow, to which CPUE was par-
ticularly sensitive.

3.3. Objective 3: emergence times

Emergence times were greatest for pasture biomass and lowest for CPUE
(Figs. 5 and 6). For instance, if flow decreased by multiples of 0.9 (10 % per
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year), the time required for mean CPUE to fall below the 5 % quantile (90 %
probability intervals) of historical variation was 16 years, but >30 years for
pasture biomass and NDVI. In comparison, emergence time for the 5 %
quantile for a 10 % per year trend in stream flow was 20 years (Fig. S6).
In general flow had slower emergence times than CPUE, but faster emer-
gence times than pasture biomass and NDVI. Emergence times were
lower for higher quantiles, reflecting the reduced level of confidence that
the trend had emerged from background variation. The differences in emer-
gence times among indicators became smaller as the quantiles were
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increased; for example, at a quantile of 40 % the indicators had similar
emergence times for all trends in flow.

4. Discussion
4.1. Relationships among indicators

We identified relationships among all indicators and flow, and particu-
larly for barramundi catch per unit effort and NDVL. There is high interan-
nual variation in the Mitchell catchment, driven by interannual variation in
rainfall. Wet years drive increased vegetation growth and barramundi pro-
duction, which was reflected in correlations among river flow, NDVI and
barramundi catch. Thus, catchment condition, defined here as covariation
in the indicators, largely reflected year-to-year variation in flow. This vari-
ation underscores the importance of quantifying interconnections between
assets via river flow and among ecosystem services. The implication is that
change in one variable (flow) can cause changes in multiple processes, and
consequently there would be correlated changes in the annual capacity of
the system to deliver different ecosystem services.

By defining the catchment condition index as a latent variable we were
able to partition out environmental effects shared by all indicators (cap-
tured in the catchment condition index) from those that were unique to spe-
cific indicators (variation in indicators that is not explained by the
condition index). The ability to identify shared trends may be desirable in
an indicator, because it facilitates the attribution of changes that affect
only specific indicators versus those that impact the overall condition of
the ecosystem (Sutherland et al., 2016; Kupschus et al., 2016). Over time

there was an increasing trend in barramundi CPUE from the 1990s to
2015. This was driven by high flows 2005-2015 and management changes
in the fishery in the late 1990s and early 2000s, which reduced fishing ef-
fort and put increased restrictions on fishing gear (Streipert et al., 2019).
NDVI had a strong correlation with flow and CPUE, but in contrast to
CPUE, NDVI did not show as strong a long-term trend, because it was not
affected by fishery management changes. Pasture biomass had the weakest
correlation with the other indicators, perhaps because it was more strongly
driven by rainfall that is local to a region and less by inundation caused by
increased river flow.

The usual approach to defining joint indices of multiple ecosystem com-
ponents has been spatial and thematic aggregation by summing spatially-
specific counts or by averaging and then normalising spatially-specific indi-
cators (Maes et al., 2020). The aggregation procedure requires the use of
some form(s) of aggregation functions and weights. Our model-based ap-
proach to defining a condition index can also be interpreted as a weighted
sum of the indicators, where the weights were estimated empirically. Each
approach has its own advantages and disadvantages. Our approach requires
time-series data, which are not available for many indicators or in some re-
gions (Dvarskas, 2018). Expert weights do not require historical data and
are simple to compute but can also be arbitrary. Arbitrary weights are not
repeatable across different groups of experts and may mis-represent man-
agement priorities (Game et al., 2013). Further, our process model sepa-
rates the effects of flow on CPUE (modelled as changes in population
growth) from the effects of fishery management on CPUE (modelled as
changes in fishing effort). Simply summing weighted CPUE with other indi-
cators would tend to overinflate the influence of barramundi fishery
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management on catchment condition. Thus, a key advantage of our ap-
proach is that it can partition changes unique to individual indicators, ver-
sus changes that are shared across the ecosystem. Identifying redundancy
and complementarities among different indicators is an important step in
ensuring that monitoring programs can focus on a parsimonious set of indi-
cators that is comprehensive of the ecosystem's dynamics (Cztcz et al.,
2021).

4.2. Comparison of our approach to other methods

Methods for evaluating indicator performance have been developed for
fisheries and biodiversity indicators (Fulton et al., 2005; Rowland et al.,
2020; Watermeyer et al., 2021). Earlier approaches tended to use mecha-
nistic ecosystem models, which are calibrated to be representative of eco-
system dynamics. These ecosystem models represent multiple variables,
so performance of indicators representing different parts of the ecosystem
can be assessed. Indicator evaluation has also been conducted through
pattern-based approaches to modelling trends, where time-series with real-
istic properties are simulated and models are refit to determine the ability
of the model to detect trends in noisy time-series data (e.g. Knape, 2016).
Our approach is a blend of statistical (the structural equation model) and
process-based models (the state-space model). We fitted the model directly
to data, which enabled us to quantify stochasticity resulting from different
sources — in this case inter-annual variation in flow as opposed to observa-
tional errors in indicators. Thus, our approach combines strengths of both
statistical trend detection and process-based modelling. This type of
model warrants further development for assessing ecosystem level change,
particularly where there is a need to differentiate the different sources of
stochasticity in observed time-series (Auger-Méthé et al., 2021).

Several modelling toolboxes have been previously developed to quan-
tify connections among the condition of ecosystems and ecosystem service
flows, but none of these directly address the challenge of effectively detect-
ing trends in indicators. Examples include the soil and water assessment
tool (Bieger et al., 2017), the Integrated valuation of ecosystem services
tradeoff (INVEST) tool (Guerry et al., 2012) and globally applicable artifi-
cial intelligence tools (Martinez-Lépez et al., 2019). These tools have
been applied for measuring connected ecosystem services across catch-
ments, in particular regulating ecosystem services relating to water quan-
tity, water quality and sediment erosion (Bieger et al., 2017; Hamel et al.,
2017). All share a common approach, based on parameterising models of
soil erosion and run-off and then analysing predicted service flows spatially
in a geographic information system. These toolboxes are designed for mak-
ing service flow projections, given sufficient information exists to parame-
terize their models. Mechanistic ecosystem service models could be used
in a similar way to our approach of evaluating indicator performance.
This would additionally require incorporating stochasticity into the ecosys-
tem service model, such as variation in flow, so that detection of trends
could be studied relative to background environmental variation.

4.3. Caveats and limitations

There are some important caveats to consider in our analysis. First,
there was missing data in some of the indicator time-series. Missing data
in time-series is a common problem in modelling and will reduce the
power to detect long-term change (Dvarskas, 2018). The latent variable ap-
proach enabled interpolating missing data, on the strength of correlated
variables (Hui et al., 2015). A simulation study suggested accuracy of pre-
dictions for a variable was not sensitive to missing data in other variables.
Thus, we suggest our approach could have value more generally for creat-
ing indices of catchment condition when there are gaps in time-series.

The analysis of barramundi used a simplified stock assessment model.
For many fisheries additional data may be available, such as data on age
structure, and this could improve the accuracy of the modelling. Our simple
stock assessment did compare well with a more quantitatively complex
stock assessment, with the stock status estimates being similar (Streipert
et al., 2019) - this is the consequence of both assessment models being
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driven primarily by trends in CPUE and the assumption of an depletion of
0.2 By in 1990. More importantly, the availability of barramundi to estua-
rine fisheries, as well as productivity, is also likely to be affected by flow
(Robins et al., 2005). An effect of flow on availability to the fishery would
mean flow affects the catchability parameter instead of, or as well as, pop-
ulation growth. Future modelling could potentially separate the different
types of flow effects, but this would require additional data types, because
productivity and catchability parameters are close to being interchangeable
in unstructured surplus production models.

An important caveat is that our indicators represent only one aspect
each of the processes supporting capacity to supply ecosystem services in
the Mitchell catchment. We focussed on assets that support commercial
fish harvest and commercial livestock grazing, because there were suffi-
cient time-series data for these indicators to assess emergence times. As
an example of what the indicators miss, Indigenous uses of ecosystems
are also an important component of the ecosystem services in Northern
Australian catchments (Scheepers and Jackson, 2012; Jackson et al.,
2012, 2014), which may be particularly sensitive to development (Stoeckl
etal., 2013). Our modelling did not include condition directly relating to In-
digenous services, due to lack of time-series data. It is likely that our conclu-
sions regarding emergence time would also apply to those assets supporting
traditional uses, such as water holes, given the interconnections in this
catchment. Future modelling studies could integrate Indigenous knowledge
to enhance the predictive power of ecosystem service models. For example,
Indigenous knowledge on the spatial distribution of barramundi (Scheepers
and Jackson, 2012) could be incorporated into ecosystem service models
(e.g. Guerry et al., 2012). This would enhance our ability to predict change
in ecosystem services, as well as quantify their value in a broader range cul-
tural contexts.

4.4. Implications for management

Our results suggest what are appropriate and inappropriate uses of these
indicators by management. CPUE had the shortest emergence times, so will
be the most sensitive indicator of long-term trends in flow. CPUE had
shorter emergence times than even flow itself. The multi-year life-history
of barramundi smooths interannual variation in flow, so trends were
slightly easier to detect. However, the high interannual variation in flow
and catchment condition will create challenges for detecting change in
the Mitchell catchment. Our estimates of the interannual variation for
each indicator were broad and thus our model predicted that emergence
times across all indicators at typical confidence bounds (10 % or 5 %)
were >10 years and sometimes >30 years for all but the most extreme
trends in flow.

These long emergence times mean the indicators will not be useful for
managers aiming to use the model to pre-emptively respond to change, be-
cause the changes will not be detected on a management relevant timespan
(Stevenson et al., 2021). Rather, the indicators will capture long-term low-
bandwidth changes in the ecosystem. For comparison, proposed water de-
velopments in the Mitchell catchment are expected to cause much smaller
reductions in flow, in order of 1-5 % per year (Petheram et al., 2018),
than most of the trends we explored here. Such water developments how-
ever are predicted to impact estuarine ecosystem services (Broadley et al.,
2020; Leahy and Robins, 2021). Thus, our findings suggest management
planning should not rely on indicators of catchment condition. Instead,
pressure indicators may better pre-empt change in catchment condition
(Cziicz et al., 2021). Predictive modelling of the response to ecosystem ser-
vices to future changes in land-use and water flow is also needed to inform
pre-emptive management in the Mitchell catchment (McMahon et al.,
2022).

5. Conclusion
We analyzed change in indicators for interconnected ecosystem assets

and found a high level of variation. This high level of variation means
long time-series are required to detect change in the capacity of the
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ecosystem to supply ecosystem services. Our quantification of timescales to
detect change provides important context for policy-makers when they are
considering indicators. For instance, we urge caution when using indicators
like the ones analyzed here in cost-benefit analysis when evaluating water
resource development proposals. Economic variables may respond rapidly
and positively to development, but the consequent degradation of catch-
ment condition and ecosystem's capacity to supply ecosystem services
may take much longer to be noticed. These temporal differences in response
times may not be adequately captured in cost benefit analysis conducted
prior to approval, which may lead to decisions that are biased towards de-
velopment opportunities that bring short-term benefits but have long-term
environmental costs that are discounted to arrive at the present value. Our
approach could be used to support development of indicator sets for attribu-
tion of trends in human impacts, catchment condition accounts and moni-
toring of human impacts.
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