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ABSTRACT: Sulfur stable isotopes are increasingly
being used as tracers of material processing in stud-
ies of both modern and historical food webs. Prepara-
tion of plant and animal material for isotope analysis
routinely includes steps that remove inorganic mate-
rial not normally assimilated by consumers. Whereas
acidification of samples is known to assist with this
for some elements (carbon), it can produce unwanted
effects for others (nitrogen). Here we tested the
effects of acidification on sulfur isotopes by compar-
ing isotope ratios of paired acidified and non-
acidified samples of seagrass, epiphytic algae grow-
ing on seagrass and animal consumers (3 types
of crustaceans: amphipods, copepods and isopods).
Acid treatment resulted in significant losses of ele-
mental sulfur from the tissues and changes in sulfur
isotope ratios of samples. The artificial depletion of
the heavy sulfur isotope decreased sulfur isotope
ratios by 2.6 %o on average, and by as much as 7.0 %o
in individual samples. Acidification of samples prior
to sulfur isotope analysis results in invalid ratios and
should not be used.
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INTRODUCTION

Over the last 2 decades, the use of stable isotope
(SI) analysis of the light elements hydrogen, carbon,
nitrogen, oxygen and sulfur has developed into a
near-universal tool in ecology, with applications
encompassing fields of investigations and disciplines
spanning the length and breadth of ecology. Within
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the broader discipline of trophic ecology (sensu lato),
SIs are commonly used to address 5 inter-related
objectives: (1) to describe the structure of food webs
and to identify the principal energetic pathways that
make up food webs (Olson et al. 2010, Hilting et al.
2013), (2) to identify the main food categories of con-
sumers (Winning et al. 1999, Oakes et al. 2010a, Le
Pape et al. 2013, Vander Zanden et al. 2013), (3) to
assess the probable inputs from different source
materials to the diet of consumers (Melville & Con-
nolly 2005, Oakes et al. 2010b, Hyndes et al. 2013),
(4) to estimate the length of food chains and trophic
levels of consumer species (Post 2002, Layman et al.
2012) and (5) to reconstruct historical diets (Froehle
et al. 2012).
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Movement and transformations of organic matter
are key processes in ecosystems and food webs, and
SI techniques are widely employed in this context to
determine the provenance of organic matter and
its subsequent biogeochemical transformations in
detrital and sediment pools (Schlacher & Wooldridge
1996, Connolly et al. 2005a, Rosenbauer et al. 2009).
SI analysis is also employed to follow the exchanges
of organic matter and nutrients between ecosystems
and habitats (Gaston et al. 2006, Connolly et al. 2009,
Fry 2011, Piovia-Scott et al. 2013), and to track
animal movements (Rubenstein & Hobson 2004). In
pollution studies, SIs are effective chemical tracers
to identify pollutant inputs and the movement of
toxicants through food webs (Schlacher et al. 2007,
Connolly et al. 2013, Jardine et al. 2013).

Naturally occurring SIratios of S can be very useful
as tracers of the fate of assimilated nutrients in
aquatic food webs, particularly when the more rou-
tinely used elements, C and N, cannot resolve food
web questions (Peterson & Howarth 1987, Connolly
et al. 2004). The relatively high variability of S
isotope ratios over small spatial scales can help de-
termine physiological and ecological processes in
aquatic systems (Oakes & Connolly 2004). In food
web studies, S is particularly effective as a comple-
mentary element to C for source determination (Con-
nolly et al. 2004)

Preparation of aquatic plants and animals for mass
spectrometry can involve acidification of the samples
(Table 1). Acid treatment is done to remove inorganic
carbonate (contained in calcified biological struc-

Table 1. Examples of variability in sample preparation for sulfur stable isotope measurements of biological material used in
food web studies with respect to acid treatment prior to mass spectrometry. The studies listed are illustrative and are not

intended to cover the full range of the literature on §*'S in aquatic plant and animal samples

Samples acidified

No acid treatment

Primary producers
Benthic microalgae

Phytoplankton

Macroalgae (e.g. Catenella, Cladophora, Dictyota,
Enteromorpha, Gracilaria, Rhizoclonum, Ulva)

Marsh plants (e.g. Aster, Distichlis, Juncus,
Phragmites, Salicornia, Scirpus, Spartina, Typha)

Seagrass (e.g. Halodule, Halophila, Posidonia,
Ruppia, Syringodium, Thalassia, Zostera)

Mangroves (Avicennia, Bruguiera,
Rhizophora, Sonneratia)

Consumers
Zooplankton

Sponges & Cnidaria (corals)

Peracarid crustaceans (e.g. amphipods,
isopods, mysids, cumaceans)

Decapod crustaceans (e.g. crabs, prawns,
shrimp, squat lobsters)

‘Worms' (e.g. polychaetes,
oligochaetes, flat worms, sipunculids)

Molluscs (e.g. gastropods, bivalves, squid)

Echinoderms (e.g. sea urchins, brittle stars,
sea cucumbers)

Fish

Birds
Marine mammals

Weinstein et al. (2000),
Howe & Simenstad (2011)

Moncreiff & Sullivan (2001),
Howe & Simenstad (2011)

Currin et al. (2011),
Howe & Simenstad (2011)

Attrill et al. (2009),
Howe & Simenstad (2011)

Oakes & Connolly (2004),
Hindell & Warry (2010),
Currin et al. (2011)

Newell et al. (1995),
Hindell & Warry (2010)

Moncreiff & Sullivan (2001),
Howe & Simenstad (2011)

Becker et al. (2009)

Becker et al. (2009),
Howe & Simenstad (2011)

Becker et al. (2009),
Howe & Simenstad (2011)

Newell et al. (1995),
Becker et al. (2009)

Howe & Simenstad (2011),
Belicka et al. (2012)

Newell et al. (1995),
Becker et al. (2009)

Stribling & Cornwell (1997),
Howe & Simenstad (2011)

Kwak & Zedler (1997)
Barros et al. (2010)

Wainright et al. (2000),
Wilson et al. (2009)

Wainright et al. (2000),
Maier et al. (2011)

Granek et al. (2009),
Wilson et al. (2009)

Wozniak et al. (2006),
Attrill et al. (2009)

Holmer et al. (2009),
Wilson et al. (2009)

Benstead et al. (2006),
Granek et al. (2009)

Rissik et al. (2009),
Belicka et al. (2012)

Granek et al. (2009)
MacAvoy et al. (2002)

Leakey et al. (2008),
Wilson et al. (2009)

MacAvoy et al.(2002),
Wilson et al. (2009)

Granek et al. (2009),
Wilson et al. (2009)

Vaslet et al. (2012)

Belicka et al. (2012)

Moreno et al. (2011)
Craig et al. (2006)
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tures, such as shells and skeletons, or in sediments
suspected to contaminate the samples) that would
bias the isotope signal (8'3C) of organic matter that is
of primary interest in food web studies. Treating
samples with acids to remove carbonates can, how-
ever, have unintended consequences for nitrogen
isotopes (8!°N) that are altered during acid treatment
(Bunn et al. 1995). This artefact introduced by acid
treatment on 8'°N is variable and generally not pre-
dictable (Bosley & Wainright 1999, Kennedy et
al. 20095).

Sulfur isotopes have, historically, been more diffi-
cult and expensive to analyse than the routinely
measured elements C and N. The application of S
isotopes in food web studies has increased markedly
in recent years, a trend that tracks the wider adoption
of isotope techniques in ecology (Fig. 1). However,
there is no consistency among investigators with
regards to acidification of sample material prior to
the analytical determination of S isotope ratios (8*S),
and no standard procedures exist regarding whether
or not to acidify different types of biological materials
(Table 1).

Acid treatment causes a bias in isotope analysis
of N, which occurs predominantly in proteins. Most
organic S is also found in proteins, so acid treatment
might also affect S ratios. With the increasing use of
S isotopes, there are widespread inconsistencies in
sample treatment (as seen in Table 1), making it
important to know the effects of acidification on S
isotopes. At present, no report has investigated any

250+ 16

] °
. 2004 15
< E 5 °N 12
(é) E v 813C A/ 5
2 1504 2
(0] 3] (o]
2 ] =
5 8
2 1004 ol

] =}
2 ] Q
o3 3 n
o 50—E

1980 1990 2000 2010
Year

Fig. 1. Trend in the number of papers that used stable iso-

topes of sulfur, carbon or nitrogen in studies of food webs or

trophic processes. Source: www.scopus.com. Search terms:

((## AND isotope*) OR ($ AND isotope*)) AND (foodweb*

OR food web * OR trophic), where ## = sulfur, or nitrogen, or
carbon, and $ = sulphur

such possible effects. Here we determined acid-
treatment effects on S isotope ratios in biological
material representing key producers and consumers
of an aquatic food web.

MATERIALS AND METHODS

Plants, algae and small animals associated with
seagrass meadows were sampled on the east coast
of the Gulf St Vincent in South Australia (34°00'S,
138°00' E), at sites previously used by Connolly et al.
(2005b). We collected numerous samples of each
organism type at multiple locations as part of a larger
food web study, but for testing the effects of acidifica-
tion, we selected the 3 samples from locations that
provided the greatest quantity of material (especially
important for samples of algae and small animal con-
sumers). We used 3 species of seagrass from shallow
coastal waters (Posidonia australis, P. sinuosa, Zos-
tera muelleri). Each seagrass sample consisted of 3
leaves from different shoots, scraped clean of con-
spicuous epiphytic algae with a razor blade and
rinsed in distilled water (see Guest et al. 2004). For
algae samples, we used epiphytic macroalgae re-
moved from 2 of the seagrass species, P. australis and
Z. muelleri. These were short, fine filaments compris-
ing a mixture of green, red and brown algae. We
used 3 types of crustaceans, collected from the sea-
grass canopy using fine-mesh sweep nets: gammarid
amphipods (multiple species), harpacticoid copepods
(multiple species) and isopods (Platynympha longi-
caudata). Samples consisted of numerous individual
animals (amphipods >20, copepods >100, isopods
>J5). For each of these 8 organism types, we had 3
replicate samples. Sample material was dried at 60°C
to constant weight, ground to a fine powder using
mortar and pestle and split into 2 aliquots (both
>5 mg), one for analysis without any further process-
ing, the other for analysis after acid treatment.

The procedure for acid treatment consisted of
slowly adding drops of HCI (1 M) to dry, powdered
material in glass vials until all gas production had
ceased. We elected not to further rinse the acidified
sample with distilled water before re-drying since it
has been shown that, for C isotopes, rinsing can in
itself affect isotope ratios (Mateo et al. 2008).

The **S:%2S ratio was calculated as the relative per
mille (%o) difference between the sample and a
recognised international standard (Canyon Diablo
Troilite) at the Iso-Analytical Laboratory (UK) on a
continuous-flow isotope ratio mass spectrometer.
From 3 to 20 mg of each sample (giving ~40 pg of S)
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Fig. 2. Effects of acid treatment on (a) the elemental sulfur content and (b) the sulfur isotope ratio (5**S) in biological sample

material from seagrass meadows (epiphytes refers to algae growing on seagrass leaves). Negative values denote (a) lower con-

centrations of sulfur in the tissue following acidification, or (b) lighter isotope ratios resulting from depletion of S following
acid treatment

was weighed into tin capsules and vanadium pentox-
ide catalyst added. Analysis of multiple sub-samples
(n = 3) demonstrated good precision (SE 0.14 %o).

RESULTS

Acid treatment significantly altered S isotope ratios,
causing a shift towards more depleted §'S values

25

(paired t-test, p < 0.001; Fig. 2b). The mean =+ SE shift
across all groups was —2.61 + 0.40 %o, with individual
samples becoming depleted by up to about 7 %e..
Changes in §'S attributable to sample treatment
were greatest in the seagrass Zostera muelleri, fol-
lowed by epiphytes and the 2 species of Posidonia
(Fig. 2b). Although S isotope ratios in consumers were,
on average, comparatively less affected by acid treat-
ment, individual samples of isopods were depleted
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Fig. 3. Relationship between (a) sulfur content and (b) isotope ratios (3**S) in acidified samples (y-axis) compared with paired
aliquots that had not been exposed to acids (x-axis). Line of best fit is linear regression, significant in both panels (p < 0.05)
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by up to nearly 3% in 8*S following acidification.
When examined over the full range of %S values
obtained, isotope shifts did not vary systematically in
relation to the original §!S value of the untreated
sample: relatively light samples were just as likely to
become depleted due to acid treatment as more
enriched samples (Fig. 3b).

The elemental S content of sample materials aver-
aged 0.78 = 0.10%. Epiphytic algae generally had
the highest mean S content: it was 1.60 + 0.33% in
samples collected from the seagrass Zostera muelleri
and 1.11 + 0.17 % in samples obtained from Posidonia
australis. The lowest S content was recorded in the
tissues of the 3 seagrass species (Z. muelleri: 0.51 +
0.06 %; P. australis: 0.42 + 0.10%; P. sinuosa: 0.36 +
0.05%). S concentrations in animal tissues were
intermediate between epiphytes and seagrasses
(isopods: 0.98 = 0.06%; amphipods: 0.58 + 0.28 %;
copepods: 0.71 £ 0.18 %).

Acidification resulted in a significant decrease in
tissue S content (paired ¢-test, p < 0.001; Fig. 2a).
Concentrations of elemental S in acid-treated mate-
rial were lower by 0.02 to 0.64% (mean decrease:
—-0.13 = 0.03%; Fig. 2). These losses represent, on
average, 17 % of the total elemental S contained in
the tissues before acid treatment; in individual sam-
ples, acidification removed up to half of the tissue S
pool. The effects of acid-digestion on S concentra-
tions were greatest in epiphytes of Zostera muelleri,
followed by the tissues of the seagrasses Z. muelleri
and Posidonia sinuosa. Loss of S during acidification
was largely proportional to the original S content of
the samples, albeit showing a slight tendency for some
particularly S-rich samples to lose more S (Fig. 3a).

DISCUSSION

Inorganic compounds are not usually assimilated
by consumers, and thus cannot affect the isotope
ratios of consumers. Accurate modelling of nutrition
pathways in food webs therefore relies on obtaining
the isotope ratio of only the organic fraction of biolog-
ical samples. Some components of aquatic food webs
are either small, precluding simple excision of mus-
cle tissue, or in the case of plants, are difficult to
separate from associated sediment, or have attached
biota that have carbonate skeletons. Such samples
are normally acidified during laboratory processing
to remove the inorganic C prior to combustion for
mass spectrometry. A critical assumption of this acid-
ification step is that it removes inorganic C, but does
not cause substantial losses of C, N or S bound up in

the organic fraction. By contrast, we observed losses
of S in all tissue types following acidification. Similar
decreases in elemental C attributable to acid treat-
ment have been reported for phytoplankton (King et
al. 1998), littoral invertebrates (Serrano et al. 2008,
Vafeiadou et al. 2013) and marine sediments (Lohse
et al. 2000), and have been used to indicate leaching
or volatilisation of organic matter beyond the in-
tended removal of inorganic C.

The general effect of acid treatment was a shift
towards more negative 84S values in all tissue types
examined. The magnitude of this method-related
bias was variable, however, both within and among
the categories of tissues tested. This variability in
observed effect size (notwithstanding its overall
strength and consistent direction) precludes the
proposition of an ‘acid correction term’' that may be
more widely applicable. Extrapolation of results
beyond the taxa tested here should not be assumed
and would require further testing. In addition, shifts
in §*S caused by acid treatment were only weakly
correlated with corresponding shifts in the elemental
S content of the samples (r = 0.37, p = 0.07); they were
also not significantly correlated with either the S
content (r = -0.13, p = 0.53) or the S isotope ratio (r =
-0.22, p = 0.29) of the untreated sample. Thus, nei-
ther the chemical composition nor the isotopic signa-
ture of untreated samples is an adequate or useful
predictor of the magnitude of expected acid-related
shifts in &*S.

Acid effects on stable C isotope ratios have been re-
ported for a range of biological materials (e.g. Jacob
et al. 2005, Jaschinski et al. 2008, Mateo et al. 2008).
However, no unequivocal explanation of the mecha-
nisms that produce the observed shifts in isotope ra-
tios has been reported in the literature. Processes that
have been posited as mechanisms for isotopic change
and fractionation of C and N caused by acid treat-
ment—and which may equally well apply for S—in-
clude the following: (1) loss of acid-soluble organic
matter during carbonate dissolution (‘solubilisation')
and leaching from tissues (Fernandes & Krull 2008,
Serrano et al. 2008, Brodie et al. 2011); (2) volatilisa-
tion of organic compounds (Lohse et al. 2000, Brodie
et al. 2011); (3) structural disintegrations of cells and
tissues and break-up of complex compounds that are
subsequently lost in sample rinses (Mateo et al. 2008);
and (4) selective preservation or loss of organic
matter and compounds with isotopically different sig-
natures (Benner et al. 1987, Brodie et al. 2011). A fifth
factor, loss of material during sample transfers, filtra-
tions, rinses or decanting following acid treatment
(Fernandes & Krull 2008, Brodie et al. 2011), is un-
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likely to have been important in the current study
since we did not rinse or wash samples with water.

Sulfur is a vital constituent of key structural and
functional molecules such as amino acids, sulfolipids
and cofactors such as vitamins and enzymes (Trust
& Fry 1992, Brosnan & Brosnan 2006). The S content
of plants typically ranges between 0.1 and 1.5% by
dry weight (Trust & Fry 1992). In marine taxa, S is
an essential element in dimethylsulfoniopropionate
(DMSP), a secondary metabolite that is widespread in
algae, vascular plants, invertebrates and vertebrates
(Van Alstyne & Puglisi 2007). DMSP has a wide range
of ecophysiological functions, being an antioxidant, a
cryoprotectant, an osmolyte, a precursor to an acti-
vated defence system and a source of S for marine
bacterioplankton (Van Alstyne & Puglisi 2007, Oduro
et al. 2012). The S isotope ratio of DMSP in marine
algae may be depleted in %S relative to other cellular
components, since it is has different biochemical
pathways to formation. We found no direct determi-
nations of whether the S isotope ratio of DMSP differs
from those of other cellular components, although it is
known to differ from that in source seawater sulfate
by 1 to 3% (Oduro et al. 2012). Selective removal of
DSMP during acid treatments remains as an untested
but possible mechanism for the isotopic changes that
we observed (Figs. 1 & 2).

CONCLUSIONS

Acid treatment of biological material prior to isotope
ratio mass spectrometry results in significant changes
to the S content and isotopic composition of the sam-
ples. These changes represent a method bias that in-
troduces avoidable error to food web analyses using
SIs of S as chemical tracers. Thus, acid treatment
should be avoided as a pre-analysis step in the meas-
urement of §*!S, and determinations should made on
untreated aliquots for materials where carbonate re-
moval by acids is required for carbon isotope analysis.
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