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ORIGINAL ARTICLE

Stable isotope evidence for trophic subsidy of coastal benthic fisheries
by river discharge plumes off small estuaries

ROD M. CONNOLLY1*, THOMAS A. SCHLACHER2 & TROY F. GASTON$,2

1Australian Rivers Institute � Coast and Estuaries, and School of Environment, Griffith University, Queensland, Australia,

and 2Faculty of Science Health & Education, University of the Sunshine Coast, Maroochydore, Queensland, Australia

Abstract
Major rivers produce large plumes which subsidize benthic marine food webs. Because most plumes are smaller, we tested
whether these also can link marine food webs with riverine discharges. We used stable isotopes to detect assimilation of
terrestrial organic matter by fish, crustaceans and cephalopods harvested from plume areas off two small estuaries in eastern
Australia, contrasted with values from marine reference sites. A terrestrial signal was evident in most marine consumers as
shifts in carbon and nitrogen isotope ratios. The strongest signal for terrestrial carbon uptake was found in two species
harvested commercially, the portunid crab, Portunus sanguinolentus, and the flounder, Pseudorhombus arsius, demonstrating a
link between river discharge and fisheries productivity in coastal seas. Against a backdrop of the general presence of a
trophic signal imparted by small plumes, absolute contributions of these subsidies were, however, smaller than in larger
systems. Also, for the species occurring in both coastal and estuarine waters (sand whiting, Sillago ciliata), isotopic variation
was considerably smaller in marine waters than across the estuarine gradient. Overall, small plumes can make contributions
to the energy requirements of coastal fisheries species, but their ephemeral nature and small physical dimensions set limits to
the degree of land�water ecotonal coupling.
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Introduction

Rivers make substantial contributions of energy

(carbon) and nutrients to oceans via estuarine plumes

(Ludwig et al. 1996). These contributions are mea-

sured in the context of global mass-balance budgets.

This is important for our general understanding of

carbon transport and for estimating the extent of

anthropogenic influence in coastal waters (Cloern

2001). It seems obvious that these inputs could play a

role in living components of marine ecosystems,

including the benthos, which has been shown to

receive organic matter sinking from plumes (Alliot

et al. 2003). Although plumes are generally regarded

as areas of enhanced biological activity (Devlin et al.

2001; Dagg et al. 2004), this aspect of estuarine

plumes is not well known for benthic animals.

One of the key ecosystem processes likely to be

affected by estuarine plumes is trophic dynamics.

The expectation from detailed studies of sheltered,

inshore seas is that outwelled material supports

higher secondary production than would otherwise

occur (Odum 1968). In aquatic systems, carbon is

considered to be more mobile than in terrestrial

systems because water acts as a vector for particulate

and dissolved organic matter (Carr et al. 2003).

There is potential, therefore, for matter exported

from estuaries to subsidize food webs elsewhere,

especially in coastal waters. Correlations between

annual flows in coastal rivers and the size of fish

catches (e.g. Lloret et al. 2001; Quinones & Montes

2001) provide indirect evidence for such an effect,

but the mechanism underlying such correlations

remains mostly unknown (Loneragan & Bunn

1999; Gillanders & Kingsford 2002).

Stable isotope analysis has become the most

common method for tracing energy and nutrient

transfers over large distances (West et al. 2006).
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Nitrogen isotopes have been used, for example, to

investigate the incorporation of anthropogenic

sources of nitrogen from developed catchments

into marine food webs (Hansson et al. 1997;

Waldron et al. 2001). Stable isotopes also provide

an efficacious measure of relative contributions of

different food sources, such as terrestrial and marine

sources, which often have distinct isotopic ratios

(Peterson & Fry 1987). For carbon, this occurs

either because plants have different photosynthetic

pathways or because they obtain carbon from air

rather than water. For nitrogen, the variation in

isotopic signatures usually results from the effects of

widespread changes in catchment land-uses, in

particular urbanisation (McClelland et al. 1997).

Since the isotope end-members of the broad source

categories, terrestrial and marine, are reasonably

well known, stable isotope analysis can detect

riverine input to coastal waters (Darnaude et al.

2004b).

Stable isotope studies of large plumes from major

rivers discharging into coastal waters have shown

that there are food web consequences of plume

inputs. For example, a stable isotope study in the

Black Sea detected assimilation of riverine organic

matter from Europe’s second largest river, the

Danube, by detritivorous invertebrates and some

fish species (Banaru & Harmelin-Vivien 2006). And

in the oligotrophic waters of the Mediterranean Sea,

isotope signatures of benthic invertebrates reflect a

measurable contribution from the Rhone River

(Darnaude et al. 2004b). At the higher trophic level

of fish themselves, the pattern is less pronounced but

nevertheless detectable (Darnaude 2005). For these

large rivers, plumes are extensive, and animal

isotope values are affected over distances of 10 or

more kilometres from the river mouth (e.g. Riera &

Richard 1997; Lee 2000; Darnaude et al. 2004a).

Despite evidence for land�ocean coupling in large

river plumes, most rivers discharging to coastal seas

worldwide are smaller and generate smaller plumes.

In the context of trophic dynamics of coastal waters,

the question thus arises whether such smaller plumes

also subsidize marine fisheries food webs.

The extent of plumes from small estuaries has

been determined from maps of the distribution of

conservative tracers in sediments. In southeast

Queensland, Australia, for example, where small

estuarine plumes punctuate long stretches of sandy

coastline, plumes off the Mooloolah River after

heavy rain cover an area of 1�2 km2 (Gaston et al.

2006). The background information about physico-

chemical and organic matter properties available for

this river led us to use it, and the nearby Maroochy

River (Schlacher et al. 2005), as representative

examples of small estuarine plumes. Conceptually,

the nutrition of fish in coastal waters will be some

mixture of marine and terrestrial/estuarine sources.

For smaller estuaries such as the Mooloolah and

Maroochy, we expect any subsidy of animal nutrition

from estuaries to be most easily detected against

background isotope ratios of the same fish species at

reference sites far (�10 km) from potential plume

influences. Our strategy, therefore, was to compare

carbon and nitrogen isotope values for a suite of

species occurring at plume and non-plume sites. We

focused on benthic species with relatively restricted

movements, since these are more likely than pelagic

species to be part of food webs affected by plumes

(Darnaude et al. 2004a). As stable isotope ratios of

fish are known to vary strongly among different

reaches of estuaries (Deegan & Garritt 1997), we

also sought to provide a wider context for changes in

isotope values (and thus nutrition) by sampling one

common species from sites along the estuarine

gradient as well as in coastal waters.

Material and methods

Animal collections

We designed a purpose-specific sampling program

using trawl collections of benthic assemblages of

fish, crustaceans and cephalopods. The spatial

component of our design was a contrast between

replicate plume areas and multiple (n�4) marine

reference sites in non-plume areas (Figure 1). Thus,

benthic consumers were collected from two sites

within the known area of the combined influence of

plumes from two adjacent estuaries, whereas refer-

ence sites were located well outside the influence of

any estuaries, a minimum of 10 km offshore and

from areas further north where no river influence

exists (Figure 1). We knew the extent of plumes from

multiple aerial surveys of conspicuous turbidity

fronts, and mapping of copper concentrations and

isotope signatures of organic matter in sediments

(Gaston et al. 2006).

The strength of the terrestrial signal in isotope

studies of food webs in plume areas has been shown

to increase after periods of high river flow (Banaru &

Harmelin-Vivien 2006). In the study region,

strongly seasonal rainfall implies that the maximum

trophic subsidy of coastal waters is expected to occur

at the end of the wet season (austral summer), after

most of the annual river discharge has entered

coastal seas in the form of multiple plume events.

Thus, samples were taken over 2 days of trawling in

May 2003, at the end of the (austral) summer.

For estuarine sampling, we required species that

occurred in marine waters and also along the

estuarine gradient. Just one species fulfilled this

Food web subsidies from small estuaries 165
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Figure 1. Map showing sampling sites for animals in areas under plumes caused by discharges from the Maroochy and Mooloolah

estuaries, contrasted with sites offshore and to the north well outside the influence of plumes.
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requirement, the sand whiting (Sillago ciliata). Sand

whiting were collected at five sites spaced along the

middle and lower reaches, covering the final 10 km

of the estuary (Figure 1). This is an important

fisheries species known to feed on benthic inverte-

brates, that has previously been part of stable isotope

studies in the Maroochy estuary (Schlacher et al.

2007) and nearby waters (Melville & Connolly

2003). The Maroochy estuary, like the Mooloolah

(Gaston et al. 2006), is narrow (width 100�300 m)

and shallow (generally B3 m). The Maroochy

catchment is a mixture of natural forest and rural

lands, with urbanized lower reaches. The forests of

the catchment and mangrove-lined banks of the

middle reaches provide organic matter inputs with

carbon isotope ratios distinctly depleted in 13C

(around �30�), but small patches of seagrass in

the lowest estuarine reach (the last 2 km) have

distinctly enriched ratios (around �12�). Nitrogen

isotope ratios are enriched in upper and middle

estuarine reaches by treated sewage entering through

multiple outfalls (Schlacher et al. 2007). Overall, the

overwhelming river plume signal to the sea is

suspended particulate organic matter (SPOM) with

depleted carbon and enriched nitrogen isotope ratios

relative to marine reference values: namely, for d13C:

�26 river versus �21� marine; and for d15N: �8

river versus �3 � marine (Schlacher et al. 2005;

Gaston et al. 2006).

Stable isotope analysis

Muscle tissue was dissected from animals and dried

to constant weight at 608C, before being placed in

tin capsules and analysed in the Isotope Analytical

Facility of Griffith University on an automated

Isoprime Isotope-Ratio Mass Spectrometer. Stable

isotope ratios are expressed in � using the conven-

tional delta (d) notation: dX (�)�[(Rsample/Rstan-

dard) � 1]�1000; where X is d13C or d15N, and R is

the 15N/14N (nitrogen) or 13C/12C (carbon) ratio in

the sample and standards (Vienna PDB equivalent

for carbon and the IAEA international standard of

atmospheric N2 for nitrogen). Precision of this mass

spectrometer for fish and invertebrate samples is

0.2�, calculated as the 90% confidence interval of

differences between paired values from duplicate

samples.

Results

Carbon

Uptake of terrestrial and estuarine carbon was

predicted to lower the carbon isotope ratios of

marine consumers under plumes. Two-thirds of

species did, indeed, have more depleted carbon

isotope ratios in plume than in non-plume areas,

indicating a trophic subsidy of material outwelled

from estuaries (Table I). Over the whole assemblage,

there was a clear pattern of small but measurable

depletion of carbon ratios in plume areas (Figure 2).

Carbon isotope depletion in individual species

ranged up to 1.5�, and was strongest for a portunid

crab (Portunus sanguinolentus) and a flatfish (Pseu-

dorhombus arsius). Significantly, both of these species

are caught in regional fisheries, indicating the pre-

sence of a terrestrial carbon subsidy in marine

fishery production. Of the remaining species, Sillago

ciliata showed no distinct spatial contrast in carbon

signatures, while two others showed small and non-

significant differences (Table I).

For sand whiting, carbon isotope ratios varied

much more strongly with distance up the estuary

(range�5�) than over the same distance between

plume and non-plume areas (range B0.5 �,

Figure 3). Individuals from the middle reaches were

strongly depleted in 13C (B�20�), gradually becom-

ing more intermediate until in the lower estuary,

ratios were markedly enriched (��15�; Figure 3).

Nitrogen

Spatial differences in nitrogen isotope ratios in

animals from plumes and non-plume areas generally

indicated some extent of river influence in a pattern

similar to differences in carbon isotopes. More

enriched nitrogen isotope ratios, which are indicative

of uptake of terrestrial matter, were detected in two-

thirds of marine consumers caught under plumes.

Differences between plume and reference non-

plume sites ranged up to 1.3�, and most were

between 0.5 and 1.0� (Table I). Significant spatial

differences consistent with a model of land�ocean

coupling were evident in five species, whereas fewer

species showed an opposite and generally small

(B0.5�) and non significant change; a single

species (Saurida undosquamis) was significantly

more enriched by 1.3� outside plumes.

Nitrogen isotope ratios of sand whiting in the

estuary were, as for carbon, much more variable

(range 4�) than between plume and non-plume

areas (range B0.5�, Figure 3). The mean ratio was

highly enriched (�15�) in the middle reaches and

remained elevated at all other estuarine sites. The

transition from the lower estuary to the sea coin-

cided with the largest change in nitrogen ratios of

these fish (Figure 3).

Discussion

Our stable isotope survey demonstrates that riverine

organic matter is incorporated into nearshore, marine

Food web subsidies from small estuaries 167

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
n
n
o
l
l
y
,
 
R
o
d
 
M
.
]
 
A
t
:
 
2
0
:
1
0
 
1
1
 
M
a
r
c
h
 
2
0
0
9



food webs. Delivery of this material occurs via small

rivers that discharge directly onto high-energy, ex-

posed coastlines. Despite the presence of an overall

signal of land�ocean coupling in the food webs under

river plumes, the absolute strength of trophic sub-

sidies by riverine organic matter was not large. The

marine fisheries species sampled in this study obtain

their nutrition overwhelmingly from marine sources,

complemented by a smaller contribution of externally

delivered material of estuarine and terrestrial prove-

nance. Such marine dominance reflects the small size

and ephemeral nature of the plumes against a back-

ground of massive sediment and organic matter

inputs from rivers to coastal seas on a global scale

(Schlünz & Schneider 1999; Devlin et al. 2001;

Wooldridge et al. 2006).

Shifts in carbon isotope ratios of animals in plume

areas relative to non-plume areas were the same as in

studies of plumes of larger rivers, denoting the

presence of a terrestrial/estuarine signal in the tissues

of marine consumers. However, the magnitude of

isotopic depletion in marine consumers from areas

influenced by river discharge (maximum of 1.5�,

but generally B0.5� in the current study) is smaller

than that detected for larger rivers (Lee 2000;

Darnaude 2005; Banaru & Harmelin-Vivien 2006).

Even in larger plumes, however, isotopic differences

between plume and non-plume areas vary among

species, in a similar fashion to the current study. In

such larger systems, it is typically detritivorous

invertebrates that show the strongest signal for a

terrestrial component in their diet, and this propa-

gates to fish preying on those invertebrates

(Darnaude et al. 2004b). Overall, though, the

smaller rivers studied by us contributed less to the

diet of marine consumers, despite our deliberate

sampling at the end of the wet season, when any river

influence should have been maximized (Banaru &

Harmelin-Vivien 2006).

Our conceptual understanding of trophic dy-

namics in small plumes is that phytoplankton are

stimulated by inorganic nitrogen (Gaston et al.

2006), whereas direct assimilation of riverine carbon

by animals in the water column is smaller. Work on

larger plumes has shown, however, that riverine

organic matter is incorporated into the benthos

(Alliot et al. 2003; Banaru et al. 2007), and that

benthic invertebrates and fish in plumes areas

Table I. Contrasts in d13C and d15N ratios of animals from plume and non-plume areas. Significant differences between plume and non-

plume means using one-way ANOVA are marked * (pB0.05).

Plume Non-plume

d13C (�) n Mean (SE) n Mean (SE)

Crustaceans

Penaeus esculentus (Tiger prawn) 13 �16.31 (0.20) 5 �16.10 (0.18)

Penaeus plebejus (Eastern king prawn) 20 �17.18 (0.13) 3 �17.11 (0.16)

Portunus sanguinolentus (Three spot crab)* 16 �17.47 (0.16) 9 �16.02 (0.08)

Cephalopods

Sepioteuthis sp. (Squid) 7 �18.63 (0.11) 4 �18.78 (0.40)

Fishes

Paramonocanthus choirocephalus (Hair-finned leatherjacket) 5 �17.76 (0.08) 4 �17.44 (0.13)

Platycephalus arenarius (Sand flathead) 6 �16.62 (0.25) 3 �16.96 (0.40)

Pseudorhombus arsius* (Large-toothed flounder) 10 �17.63 (0.16) 6 �17.03 (0.27)

Saurida undosquamis (Large-scaled grinner) 9 �17.73 (0.12) 14 �17.48 (0.24)

Sillago ciliata (Sand whiting) 12 �17.35 (0.10) 15 �17.40 (0.12)

Plume Non-plume

d15N (�) n Mean (SE) n Mean (SE)

Crustaceans

Penaeus esculentus (Tiger prawn)* 13 9.58 (0.32) 5 8.84 (0.28)

Penaeus plebejus (Eastern king prawn)* 20 9.80 (0.31) 3 9.08 (0.03)

Portunus sanguinolentus (Three spot crab) 16 10.00 (0.20) 9 10.22 (0.28)

Cephalopods

Sepioteuthis sp. (Squid)* 7 10.86 (0.21) 4 10.01 (0.25)

Fishes

Paramonocanthus choirocephalus (Hair-finned leatherjacket) 5 9.16 (0.56) 4 9.35 (0.35)

Platycephalus arenarius (Sand flathead) 6 12.86 (0.25) 3 12.59 (0.08)

Pseudorhombus arsius* (Large-toothed flounder) 10 12.28 (0.48) 6 11.10 (0.42)

Saurida undosquamis* (Large-scaled grinner) 9 12.83 (0.47) 14 14.12 (0.40)

Sillago ciliata (Sand whiting)* 12 11.45 (0.20) 15 10.98 (0.18)
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assimilate terrestrial carbon (Riera & Richard 1997;

Lee 2000). We therefore expected that any trophic

influence of smaller plumes would be greatest in

benthic food webs. Indeed, we have previously

shown that these small rivers deliver appreciable

quantities of terrestrial organic carbon to the sea

floor under plumes (Gaston et al. 2006).

The weaker isotopic signal of riverine influence

measured by us might result from the variable nature

of plume events generated by smaller rivers. Plumes

off the Mooloolah and Maroochy estuaries are not

only small in physical dimensions, but are also short-

lived events, typically lasting only for a few days

following heavy rainfall (Gaston et al. 2006). Thus,

inputs of terrestrial matter to nearshore marine

waters are erratic and ephemeral in nature, presum-

ably limiting the contribution of this carbon to

recipient food webs. Isotope ratios in marine con-

sumers are therefore a composite of feeding on

marine sources for long periods, supplemented by

pulsed intakes of terrestrial material.

Another possible reason that only a weak terres-

trial signal was found in the plume area is that

animals move in and out of the area of plume

influence. Animals caught in the plume area during

the study might have lived and fed elsewhere during

the preceding weeks and months, imparting a

marine signature on tissue isotope ratios. Animals

may derive a trophic subsidy from pulsed plume

events, but this is masked by marine signals when

feeding outside plume areas. It is also possible that

freshwater discharge from the estuaries could initiate

movement of animals to more marine areas and thus

a subsequent shift to different carbon sources.

The two species showing significantly more de-

pleted carbon isotope ratios in plume than in non-

plume areas (three spot crab, Portunus sanguinolentus,

and large-toothed flounder, Pseudorhombus arsius)

both feed on other fish and benthic invertebrates

(Blaber 1980; Sukumaran & Neelakantan 1997).

The three spot crab is a more active predator than

the flounder, which is an ambush predator, but both

species are strictly benthic, and we assume would be

thoroughly enmeshed in the benthic food web.

These species are harvested as part of the trawl

fishery on the east coast of Australia (Williams

2002); assimilation of terrestrial carbon by these

species indicates a direct link between riverine

organic matter and fisheries productivity.

For nitrogen isotopes, there was the same small but

distinct estuarine signal in consumers collected from

the plume areas. This shows that while many other

studies have used the enriched nitrogen isotope ratios
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from anthropogenic sources to delineate the extent of

eutrophication in the sea (Nixon & Buckley 2002;

Gaston et al. 2004; Costanzo et al. 2005), anthro-

pogenic nitrogen with its enriched nitrogen isotope

signal is also a useful tracer of riverine influence in

marine food webs (Peterson 1999; West et al. 2006).

The patterns in isotope ratios of sand whiting

throughout the Maroochy estuary provide a context

for the differences in ratios at marine sites. Isotopic

variation in fish is much larger across estuarine

gradients than over the same spatial scale in the

sea off the estuary. The relatively large changes in the

estuary had different causes for carbon and nitrogen.

For carbon, the sharp changes in isotope ratios

reflect the changing prominence of different sources

of organic matter available to animals. Major shifts

in putative carbon sources for fish have been well

described in estuaries (Schlacher & Wooldridge

1996), where animals often rely on local sources of

carbon (Deegan & Garritt 1997). In the Maroochy

system, the relatively depleted carbon isotope ratios

of sand whiting in the middle estuary probably

reflect uptake of terrestrial and mangrove carbon

(Eyre 1998; Schlacher et al. 2007; Bouillon et al.

2008). Nearer the estuary mouth, strikingly enriched

ratios reflect a localized influence of seagrass pro-

duction, which is known to be enriched in 13C

(Melville & Connolly 2005). Such small-scale pat-

terns in animal isotope ratios in estuaries are known

from several recent studies, implying localized con-

sumption of available resources and limited move-

ment of consumers (e.g. Riera et al. 1999; Hsieh

et al. 2002; Guest et al. 2004, 2006). This would

explain how sand whiting from the lower estuary

obtain enriched carbon ratios by preying on inverte-

brates in or around seagrass patches (Connolly et al.

2005), despite an overall depleted organic carbon

pool moving from the estuary to the sea. Temporal

variability in carbon pathways has been shown from

the lower reaches of estuaries elsewhere, including in

response to freshwater flows (Wissel & Fry 2005).

Similar to carbon, spatial differences in nitrogen

isotope ratios of sand whiting inside the estuary

reflect localized uptake of different nitrogen sources.

In the Maroochy estuary, changes to the nitrogen

pool occur mainly from the release of large quan-

tities of sewage nitrogen to the middle reaches of the

estuary (47 t per year: Schlacher et al. 2005). The

very high ratios in the middle estuary, with reduced

but still enriched ratios lower in the estuary, is the

same, consistent pattern described for sand whiting

collected in other years in the Maroochy estuary

(Schlacher et al. 2007), corroborating the influence

of wastewater on estuarine fish. This consistency in

spatial patterns also indicates a reasonable degree of

site fidelity within the estuary for this species.

In summary, small plumes from relatively small

rivers deliver enough organic matter to provide small

trophic subsidies to benthic food webs in coastal

seas. The ephemeral nature and small extent of the

plumes does, however, set limits to the extent of

terrestrial influence both in terms of the number of

species that assimilate this carbon and the contribu-

tion it makes to the energy requirements of con-

sumers. Although terrestrial carbon might be utilized

by pelagic species, benthic fisheries species probably

show the highest degree of assimilation of terrestrial

material, and demonstrate land�ocean coupling in

marine fisheries productivity.
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