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Chapter 7
Seagrass Dynamics and Resilience

Rod M. Connolly, Emma L. Jackson, Peter I. Macreadie,
Paul S. Maxwell and Katherine R. O’Brien

Abstract The vulnerability of seagrass ecosystems, and the services they provide,
to damage and loss from anthropogenic stressors has led to a surge of interest in
understanding their resilience. This chapter examines patterns of change in tropical
and temperate Australian seagrasses to identify underlying causes of the observed
patterns. It then relates seagrass dynamics to ecosystem resilience, and examines
how resilience can be measured, managed and enhanced. Seagrasses in tropical
waters show strong seasonal patterns in many places, with seagrass extent and
cover increasing during the winter dry season and decreasing during the summer
wet season. This seasonality is overlaid by a striking longer term trend of increase
during El Niño periods and subsequent loss during wetter, stormier La Niña peri-
ods. Seasonality is less evident in temperate waters, where mapping of dynamics
has generally been used to show longer term patterns, especially large-scale loss
after decades of stability, sometimes with partial recovery. Changes in some places
have been linear and in others strongly non-linear, possibly indicative of systems
breaching a threshold or tipping point in levels of stressors such as pollutants.
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Resilience theory has become a powerful tool for understanding the dynamics of
seagrass change. Seagrass resilience requires several key traits: genetic and species
diversity, good water quality, connected ecosystems and continuous habitats, and
balanced trophic interactions. These traits are integrated through ecological feed-
backs. In Zostera muelleri meadows, for example, the capacity for seagrass to resist
decline during pulses of poor water quality depends on its ability to: (1) efficiently
remove excessive nutrients from the water, thereby limiting phytoplankton growth
and improving water clarity, (2) suppress resuspension of sediment for improved
water clarity, and (3) provide habitat for grazing animals that remove epiphytic
algae. The increased understanding of resilience is shifting the focus of seagrass
ecosystem management towards the management of stressors to optimise key
feedbacks, and thus ultimately to enhance resilience. The chapter culminates in
descriptions of practical management actions demonstrated to effectively enhance
key traits and overall seagrass resilience.

7.1 Introduction

Seagrasses provide ecosystem services and structure ecological processes in the
nearshore coastal environment, which has led to a high level of interest from
managers and scientists. We therefore have a large body of knowledge about the
dynamics of seagrass presence and cover. Some populations (and species) are
relatively persistent whereas others are dynamic over time and large areas have
been lost. These differences are due to how seagrasses respond to environmental
pressures and the different responses may be due to differences in resilience. This
chapter examines patterns of change in tropical and temperate Australian seagrasses
using case studies to identify some of the underlying causes of the observed pat-
terns. It then reviews how the dynamics of seagrass in Australia relate to ecosystem
resilience, and how resilience might be measured and enhanced.

7.1.1 Application of Resilience Theory to Seagrass

Resilience theory is becoming the cornerstone for developing predictive science in
the field of ecology (Hughes et al. 2005), and the lens through which climate
change adaptation is assessed (Visser 2008). In a broad sense, resilience refers to
the capacity of an ecosystem to cope with disturbance. Environmental stressors can
lead to an ecosystem shift from one state to another, and resilience is about an
ecosystem’s ability to remain in its current state. If the factors that provide resi-
lience to a given ecosystem can be predicted, monitored and modified, we have the
best chance of maintaining desired ecosystem states in the face of increasing
environmental change (Folke et al. 2004). The understanding of mechanisms that
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confer ecosystem resilience and the development of resilience theory are two of the
major challenges currently facing ecologists (Thrush et al. 2009).

Like many other coastal ecosystems, seagrasses are subject to multiple inter-
acting stressors, including climate change, invasive species, coastal development,
and eutrophication (York et al. 2017). Seagrass ecosystems are well-suited for
developing an understanding of the mechanisms that underpin ecological resilience.
Because they are typically the first habitats in nearshore waters to respond to
environmental disturbance, they are often considered the ‘canaries in the coalmine’
of coastal ecosystems. Australia’s National Climate Change Adaptation Research
Facility has earmarked seagrasses as sentinels for the changing marine ecosystems
of Australian coastal waters (Connolly 2012). Climate change is predicted to cause
major loss of seagrass habitat directly, e.g. through physical removal during storms
that are predicted to become more frequent, and indirectly, e.g. through degradation
of abiotic conditions associated with rising sea levels, increasing water tempera-
tures, and changes in salinity from altered rainfall patterns (Connolly 2012).

Seagrasses show variable adaptations for resistance to and recovery from dis-
turbance. Resistance to short-term disturbances in the light climate is, for example,
aided by the storage of carbohydrate reserves in some species (Fraser et al. 2014),
or photo-adaptive and photo-protective responses in others (Campbell et al. 2007).
Resilience is also enhanced by the existence of asexual and sexual recovery
mechanisms, which include fast growth rates (Macreadie et al. 2014a), the stimu-
lation of apex production (e.g. Eklöf et al. 2010), the existence of extensive seed
banks (York et al. 2015) and the potential for propagules (seeds and vegetative
fragments) to be transported from neighbouring meadows (McMahon et al. 2014;
Stafford-Bell et al. 2015). The system traits underpinning seagrass resilience have
been categorised in a resilience framework (Table 7.1; Unsworth et al. 2015). The
role of ecological feedbacks is a central tenet of resilience, both feedbacks that help
maintain seagrass growth, and those that prevent return to seagrass once lost.
Because seagrasses are ecosystem engineers, the feedbacks evident [for example in
terms of turbidity reduction and sediment stabilisation, Maxwell et al. (2014)] are
important elements for consideration when examining how much disturbance can
be absorbed before a state change (regime shift) is observed (Folke et al. 2004).

7.2 Seagrass Dynamics in Australia

7.2.1 Tropical Waters

Tropical Australian seagrass meadows are highly dynamic (Birch and Birch 1984),
with a dominance of transitory meadows of opportunistic and colonising seagrass
species (Kilminster et al. 2015). Offshore, deep-water Halophila species are
ephemeral as they are vulnerable to disturbance but can exhibit fast recovery from
seed banks (Rasheed et al. 2014), a possible adaptation to the highly variable light
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environment to which these meadows are exposed. More stable seagrass meadows
dominate shallower inshore waters in locations where physical disturbance is
minimal. These meadows consist of species with more persistent life history traits,
e.g. Halodule uninervis and Zostera muelleri, that rely primarily on vegetative
clonal growth and are slower to recover from disturbance (Rasheed et al. (2014),
although there is also one clear example of recovery through seed germination in
Hervey Bay (Campbell and McKenzie 2004).

Despite inherent variability, long-term monitoring programs across tropical and
subtropical Queensland have identified some intra- and inter-annual patterns in
seagrass loss and natural recovery [for details of monitoring programs see Coles
et al. (2015)]. The main drivers of seagrass dynamics in Queensland are tropical
summer storms and cyclones, and associated flood events, which can cause
large-scale losses (Poiner et al. 1989; Preen et al. 1995; Campbell and McKenzie
2004; York et al. 2015). Such events are highly seasonal and in many places an
approximately two-fold change in seagrass standing crop between summer and
winter has been observed (Young and Kirkman 1975; Lanyon and Marsh 1995;

Table 7.1 Seagrass resilience traits, management actions and practical methods that have been
used to increase resilience of seagrass ecosystems (modified from Unsworth et al. 2015)

Trait Action Method

Diversity—
species and
genetic

Increase genetic diversity Deploy seeds from a wider region
Enhance genetic connectivity

Good water
quality

Reduce physical impacts Local management to avoid direct
impacts such as anchoring and bait
digging

Reduce algal overgrowth Improve water quality and manage
fisheries to increase herbivory in the
food web

Increase photosynthetic
productivity

Improve water quality

Reduce chemical toxicity Control entry into waterways of
chemical toxicants

Increase compliance with
environmental regulations
relating to seagrass

Improve local knowledge of the
locations of seagrass meadows and
their value and sensitivities

Connected
ecosystems and
continuous habitat

Reconnect isolated and
fragmented meadows

Targeted restoration

Maintain connectivity Ensure continued presence and health
of associated habitats (e.g. reefs,
mangroves)

Balanced trophic
interactions

Encourage balanced
herbivory and bioturbation

Manage fisheries species, including
predators, through fisheries and habitat
management (e.g. marine reserves)

Provide early warning of
issues of concern

Monitoring of structure and functions
linked to feedbacks
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York et al. 2015). The magnitude of seasonal change varies with latitude and
species, e.g. York et al. (2015) observed a complete absence of seagrass between
January and June at Hay Point, Queensland, whereas further north, seasonal pat-
terns exist, but seagrass is generally present year round (Coles et al. 2015).

Pronounced seasonal cycles in seagrass meadows are evident even in years
without extreme storm or flood events and have been linked to the following
factors: day length and daytime air exposure for intertidal meadows (Mellors et al.
1993; Lanyon and Marsh 1995; McKenzie and Unsworth 2009; Rasheed and
Unsworth 2011; Unsworth et al. 2015), water temperature (Mellors et al. 1993;
Lanyon and Marsh 1995), rainfall and river flow (Lanyon and Marsh 1995), and
wind strength and direction (Lanyon and Marsh 1995; Mellors et al. 1993). Rasheed
and Unsworth (2011) analysed the temporal dynamics of an intertidal meadow of
Halodule uninervis growing in turbid conditions over a 16-year period (Fig. 7.1).
Variability in seagrass biomass was highly correlated with river flow (positive), air
temperature (negative) and long-term cycles of tidal exposure. The study high-
lighted that whilst frequent flood events may decrease seagrass cover, too little rain
(and the subsequent lack of river flow that supplies important nutrients) can also
have a negative impact.

Longer-term dynamics are often driven by climate. For example, the frequency
and magnitude of extreme storms and flood events are correlated with the El Nino

Fig. 7.1 Dynamic change in
seagrass biomass and area at
Karumba (northern
Queensland) over a 16-year
period, Oct 1994–Oct 2009
inclusive (mean, SE). For
biomass, bold line is total,
dashed lines represent the two
main species Halodule
uninervis (upper line) and
Halophila ovalis (lower line).
From Rasheed and Unsworth
(2011)
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Southern Oscillation (ENSO). Above-average rainfall and more frequent storms and
cyclones associated with La Niña events increase turbidity, decrease salinity and
cause physical disturbance to the plants and seed banks, together resulting in
large-scale declines of seagrass (Fig. 7.2). The combination of the 2010–11 La
Niña event, one of the strongest on record, and the series of La Niña weather events
in preceding years, exposing the region to above average rainfall and intense storm
and cyclone activity, appears to have been the cause of the decline in seagrass cover
across the Great Barrier Reef World Heritage Area (Coles et al. 2015; McKenna
et al. 2015). Multiple years of La Niña may denude seed banks, and impede asexual
revegetation.

Natural seasonal and inter-annual cycles in seagrass standing crop are subject to
disruption due to direct anthropogenic activities and indirect climate effects (Grech
et al. 2011; Saunders et al. 2015). Observations of deep-water seagrass meadows
(primarily Halophila decipiens with marginal H. spinulosa) at Hay Point
(Queensland) over an eight year period (York et al. 2015) identified strong annual
seasonality, with seagrass present only between July and December each year.
During 2006, no seagrass was present, which was attributed to persistent large-scale
plumes of turbid water resulting from an eight-month dredging program.
Recruitment occurred the next year and the annual cycle resumed, although bio-
mass did not return to pre-dredge levels at any time during the study period (six
years post-dredging) (York et al. 2015). It has been proposed that these tropical
meadows, which are typically subjected to chronic stress in the form of seasonal
storm disturbance, possibly in combination with intense grazing, have adapted to
recover quickly not only from chronic stresses but also large acute disturbances
(Unsworth et al. 2015).

Fig. 7.2 Dynamic change in
area of seagrass meadows in
Cairns harbour (northern
Queensland), over a 12-year
period, 2001–2012 (mean,
SE). Dashed line represents
long-term mean. From
McKenna et al. (2015). Major
La Niña-related weather event
occurred 2010/2011

202 R. M. Connolly et al.

r.connolly@griffith.edu.au



7.2.2 Temperate Waters

Australia’s temperate seagrasses occupy southern waters from Shark Bay on the
west coast to northern New South Wales on the east coast (see Chaps. 2 and 3). The
diversity of Australia’s temperate seagrasses is impressive. Approximately half of
the 72 species that exist worldwide occur within Australia’s southern waters, with a
high degree of endemism and with it some unique plant characteristics (morphology
and physiology—see Chap. 4) that reflect adaption to local environmental
conditions.

Dynamics of eelgrass, Heterozostera nigricaulis, in Port Phillip Bay has been
studied intensively in recent years (Macreadie et al. 2010; Jenkins et al. 2015; Hirst
et al. 2016). This has resulted in a comprehensive and detailed dataset covering a
wide range of attributes of seagrass dynamics, including dispersal, reproduction,
and recovery from disturbance. H. nigricaulis is an ecosystem engineer in Port
Phillip Bay where it occurs around the margins from the shallow subtidal zone to
depths of 8 m. It provides ecosystem services, such as water filtration (Lee et al.
2012), carbon sequestration (Macreadie et al. 2014b), biological productivity for
marine food webs (Warry et al. 2009), and nursery habitats for key recreational and
commercial fish species (Jenkins et al. 2011; Smith et al. 2011).

The distribution of H. nigricaulis cover in the bay has been monitored for
approximately 70 years. Over this period it has varied without any consistent
pattern; some areas increased, others declined, and yet others fluctuated (Ball et al.
2014). The lack of any bay-wide pattern in seagrass cover made it difficult for
coastal managers to pinpoint factors influencing seagrass cover and thus to manage
seagrass effectively. Because Port Phillip Bay is such a large embayment covering
>2000 km2, there is large variation in physical (e.g. currents, circulation), chemical
(e.g. nutrient inputs), biotic (e.g. herbivores), and anthropogenic processes (e.g.
boating impacts) acting on seagrass populations across the bay.

For many years it was thought that changes in seagrass cover could be due to
nutrient and sediment inputs (Bulthuis et al. 1992; Jenkins et al. 2015). Moderate
levels of nutrients can positively affect seagrasses by improving productivity of
nutrient-limited plants, but high levels can have negative impacts by increasing
epiphyte loads, whereas sediments can reduce light availability and bury seagrasses
(Burkholder et al. 2007). Some support for these theories is provided by a series of
studies [including modeling, chemical analyses, and manipulative experiments;
Jenkins et al. (2015)], showing that bay-wide patterns in seagrass distribution are
driven by wave exposure (a proxy for sediment loading) and depth (a proxy for
light availability for seagrass growth).

Jenkins et al. (2015) concluded that seagrass within the bay could be classified
into three broad categories. First, there are seagrass populations growing in isolated
pockets within the bay (e.g. Swan Bay and Corio Bay) that are sheltered from
hydrodynamic stressors (currents and waves) and fluvial inputs (e.g. runoff) and
have relatively stable cover. These ‘persistent’ populations grow in muddy soils
where nutrients are derived from detrital inputs. Second, there are seagrass
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populations living in exposed areas of the bay (e.g. Bellarine Peninsula and
southern areas of the bay) that fluctuate in response to changes in fluvial inputs and
sediment movement, and are considered ‘ephemeral’. Third, there are seagrass
populations along the north-west coast of the bay that grow in fine sediments, are
under regular turbidity stress, and respond positively to nutrients from a nearby
sewage treatment plant (Hirst et al. 2016). Not surprisingly, differences in the
population dynamics of seagrass in these three regions have implications for their
resilience to changes in water quality in the form of nutrient and sediment stress.
For example, the persistent populations are relatively unaffected by nutrient and
sediment loading, whereas ephemeral populations respond rapidly to changes in
catchment inputs and climate that affect nutrient and sediment supply (Fig. 7.3).

7.3 Evidence for Changes in Seagrass Cover Over Time

The important role of seagrass in the provision of ecosystem services has led to
alarm at the perceived losses in seagrass cover in Australia and elsewhere. Much of
the literature is focussed on major, sometimes rapid declines, and there are clear
examples internationally of on-going, incremental losses of seagrass that reach a
tipping point beyond which entire areas become devoid of seagrass (e.g. Cunha and

Fig. 7.3 Dynamics of seagrass populations vary among locations for Heterozostera nigricaulis in
Port Phillip Bay. Populations living in sandy, nutrient-limited environments are more ephemeral
and have little tolerance to nutrient and sediment stress, whereas populations in muddy,
nutrient-saturated environments appear less susceptible to nutrient and sediment stress and are
therefore more persistent
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Santos 2009; Fonseca and Bell 1998). Notwithstanding this emphasis on thresholds
and non-linear changes, however, an analysis of the dynamics of seagrass in
Australia shows that several different patterns of change occur, including:
(1) massive losses over a decade, without recovery, after decades of stability (NSW,
Fig. 7.4a), (2) steady, linear increase (WA, Fig. 7.4b), (3) massive losses over a
decade, followed by partial recovery in subsequent decades (VIC, Fig. 7.4c), and
(4) relatively quick loss, with full recovery (QLD) (Fig. 7.4d). These diverse
examples highlight the need for robust monitoring of patterns in seagrass distri-
butions, with finer spatial and temporal resolution, to support future efforts at
understanding resilience.

7.4 Application of Resilience Theory to Australian
Seagrass

Resilience is a popular concept in the management of natural resources in coastal
waters because in many situations managers know what habitat is there and would
prefer to retain it. The term is used frequently in relation to seagrass ecosystems

Fig. 7.4 Examples of
population dynamics of
seagrass in Australia:
a Posidonia australis,
Southern Shore, Botany Bay,
NSW (redrawn based on data
from Larkum and West 1990);
b Posidonia coriacea,
Amphibolis griffithii, Success
Bank, WA (redrawn from
Kendrick et al. 2000);
c Heterozostera nigricaulis,
Zostera muelleri,
Westernport, VIC (redrawn
from Blake and Ball 2001;
Kirkman 2014); d Halophila
spp., Hervey Bay, QLD
(redrawn from Preen et al.
1995)
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because one of the most common changes observed for seagrass meadows is a shift
to an unvegetated or an algal-dominated habitat, both of which are considered to
provide fewer ecosystem services (Unsworth et al. 2015). Resilience is, formally, a
specific property of complex systems, being the capacity of the system to retain
structure and function in the face of disturbance. This capacity manifests through
two potential avenues: resistance to change, and recovery after a temporary loss of
structure and function (Folke et al. 2004).

Feedback loops play an important role in maintaining the structures and func-
tions of ecosystems. External pressures e.g. pollution or climate change can reduce
the strength of these feedbacks to the point where the ecosystem reaches a tipping
point and there is a fundamental change in state (Nyström et al. 2012). The new
state and its structure and function is then reinforced by a new set of feedbacks
(unvegetated substrate, Fig. 7.5). The existence of the different sets of feedbacks in
maintaining alternative states has important implications. First, ecosystems are
vulnerable to rapid change at a particular level of disturbance—a tipping point—
which can be difficult to predict. Second, due to the feedbacks that work to maintain
the system in its new state, it can be challenging to return a system to its original
state simply by removing the stressor. Hysteresis in the system can mean that

Fig. 7.5 Examples of feedback loops in seagrass ecosystems that mitigate the relationship
between changing levels of environmental stress (disturbance) and the response of seagrass, in:
a seagrass dominant habitat, and b unvegetated substrate (from Maxwell et al. 2017)
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recovery only occurs after the original stressor is reduced to a level well below that
at which the tipping point occurred (Duarte et al. 2009).

We have recently begun to study feedback explicitly in seagrass systems in
Australia as part of a global increase in understanding their importance (Unsworth
et al. 2015). As ecosystem engineers, seagrasses provide obvious structure in what
is often an otherwise unstructured, unvegetated system. They also modify the
environmental conditions in the sediment and water column. The strong influence
of seagrasses on their environment has led to overt recognition of the feedbacks that
help maintain the health and persistence of seagrass meadows in Australia
(Maxwell et al. 2015).

The concepts of non-linear changes and tipping points are prevalent in seagrass
literature but, as we have shown above, patterns of change in seagrass cover vary
widely. In many cases the low frequency of monitoring prevents a rigorous
assessment being made of whether declines are linear or non-linear. We point out,
therefore, that the principles of resilience, feedbacks and alternative states apply
equally to scenarios where changes in the amount of habitat are linear or non-linear
(Hughes et al. 2013). A resilience approach therefore has very widespread appli-
cability in research supporting seagrass protection and conservation, regardless of
the precise pattern of change in seagrass cover.

7.4.1 Feedbacks in Australian Seagrass Systems

The processes conferring resilience in seagrass have been examined for Zostera
muelleri meadows in the subtropical waters of Moreton Bay, southern Queensland.
Maxwell et al. (2014) measured the response of seagrass to disturbance from
floodwaters entering the bay after the largest rainfall event in 40 years. Three key
feedbacks bestowing a capacity for seagrass to resist decline during a pulse of
extremely poor water quality were identified: (1) efficient removal of excessive
nutrients from the water column leading to limited phytoplankton growth and
improved water clarity, (2) increased deposition and suppressed resuspension of
sediment and improved water clarity, and (3) provision of habitat for small grazing
animals and thus more rapid removal of epiphytic algae (Maxwell et al. 2014).
Although the strength of influence of specific feedbacks is dependent on location
and the nature of the disturbance (Suykerbuyk et al. 2012), the key feedbacks in
Moreton Bay meadows are consistent with those reported from studies elsewhere in
the world (Fig. 7.5; Maxwell et al. 2017).

7.4.2 Alternative States

The concept of alternative states in seagrass ecosystems is also understood for the
Zostera muelleri meadows of Moreton Bay (Maxwell et al. 2015). First, the
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physiological and morphological responses of seagrass to changing water quality
are known; second, the role of key feedbacks in seagrass persistence has been
quantified; and third, current and historical distributions of seagrass are mapped.
These three aspects were combined in a Bayesian Belief Network model and used
to predict seagrass presence and absence: a comparison between predicted, actual
and historical distributions demonstrated true alternative states. That is, at certain,
intermediate levels of water quality, if seagrass is present it persists, but if it is
absent it cannot re-establish (Maxwell et al. 2015). Such areas have now been
mapped and henceforth provide a focus for coastal resource managers (Gilby et al.
2016; Henderson et al. 2017).

7.4.3 Measuring Resilience

Resilience is a property of complex, adaptive systems that is driven by multiple
feedbacks and interactions between biotic and abiotic components across a range of
spatial and temporal scales (Gunderson 2000). This complexity can make it difficult
to predict ecosystem responses to stressors. Traditional measures used to assess the
state of seagrass ecosystems, such as seagrass density, cover, biomass and extent,
are not good proxies for resilience because they can remain at high levels even as
the system is close to collapse (e.g. Soissons et al. 2014).

The focus of much of the research into the resilience of Australian seagrass
meadows has been on recovery rates, and the mechanisms by which seagrass cover at
a particular location returns to a previous amount. Such studies provide valuable
information on the potential of species to recover from disturbance on a small scale;
for example, re-establishment of Halophila ovalis in a Western Australian estuary
following multiple disturbances (Eklöf et al. 2010), and of Heterozostera nigricaulis
in Port Phillip Bay, Victoria, following experimental removal of seagrass (Macreadie
et al. 2014a). Recovery of seagrass at larger scales is more problematic, as it is for
other coastal ecosystems, because a return to precisely the original state is less likely
(Duarte et al. 2014). Quantifying recovery at the whole-of-system scale typically
requires both a comprehensive dataset of seagrass responses to past disturbances and
a capacity for dynamic modelling, to predict critical thresholds where the balance can
shift from recovery to decline (Standish et al. 2014). It is also important to note that in
the dynamic, open type of system applicable to most seagrass ecosystems, resilience
needs to be defined and measured within the bounds of a specific period and for
particular environmental conditions (Standish et al. 2014).

7.4.4 Managing for Resilience

The concept of managing stressors on environmental systems to maximise system
resilience is both popular and worthwhile (Walker and Salt 2012). For seagrass, the
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steps required to manage for resilience are similar to, but not necessarily the same
as, those traditionally used to protect or conserve seagrasses. Where the under-
standing of resilience allows it, the emphasis should be on managing to enhance key
feedback processes (Maxwell et al. 2015). In the absence of comprehensive datasets
and an understanding of resilience of seagrass at a particular location, a generic
strategy of protecting features likely to be important in resilience is recommended.
Unsworth et al. (2015) list ten actions that have been used successfully to enhance
resilience of seagrasses internationally (Table 7.1). To manage a system for resi-
lience we should aim to preserve as many of the underlying traits as possible.

Addressing the capacity of the ecosystem to promote natural seagrass recovery is
also important for enhancing the recovery potential of seagrass meadows. The role
of dispersal of genetic material in connectivity among meadows is a particularly
important component of the capacity for recovery (Kendrick et al. 2012). The
sources of genetic material are often a function of the species present and prevailing
hydrological conditions (Kendrick et al. 2012), with seeds of some species trav-
elling up to 400 km and of others just a few metres.

7.5 Conclusions

The scientific study of the resilience of Australian seagrasses is advancing rapidly,
assisted by an improved theoretical framework for resilience research on seagrass
and other coastal habitats. This improved understanding is having far-reaching
implications for expectations of how seagrasses should be monitored and managed.
While the long-standing reporting of seagrass dynamics in many locations in
Australia has been helpful, it is clear that changes in seagrass extent and biomass
need monitoring at finer temporal and spatial resolutions than has often been the
case historically. There is now a much clearer focus on understanding and moni-
toring characteristics of seagrasses and their environment to inform management
aimed at enhancing the resilience of seagrass ecosystems.
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