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identification sonar (DIDSON) dataset. We compared 
three types of detections, direct acoustic, acoustic 
shadows, and a combination of direct and shad-
ows. The deep learning model was highly reliable at 
detecting fish to obtain abundance data using acous-
tic data. Model accuracy for counts-per-image was 
improved by the inclusion of shadows (F1 scores, a 
measure of the model accuracy: direct 0.79, shadow 
0.88, combined 0.90). Model accuracy for MaxN per 
video was high for all three types of detections (F1 
scores: direct 0.90, shadow 0.90, combined 0.91). Our 
results demonstrate that CNNs are a powerful tool for 
automating underwater acoustic data analysis. Given 
this promise, we suggest broadening the scope of test-
ing to include a wider range of fish shapes, sizes, and 
abundances, with a view to automating species (or 
‘morphospecies’) identification and counts.

Keywords Acoustic camera · Deep learning · 
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Introduction

Monitoring of fish stocks across a wide range of envi-
ronments is a critical task for effective management. 
Fisheries scientists and managers monitor fish stocks 
by collecting data on population abundance, bio-
mass and densities (Egerton et al. 2018; Smith et al. 
2021), schooling behaviours (Trenkel et  al. 2011), 
predator–prey relationships (Becker and Suthers 

Abstract Efficacious monitoring of fish stocks is 
critical for efficient management. Multibeam acous-
tic cameras, that use sound-reflectance to generate 
moving pictures, provide an important alternative to 
traditional video-based methods that are inoperable 
in turbid waters. However, acoustic cameras, like 
standard video monitoring methods, produce large 
volumes of imagery from which it is time consum-
ing and costly to extract data manually. Deep learn-
ing, a form of machine learning, can be used to auto-
mate the processing and analysis of acoustic data. We 
used convolutional neural networks (CNNs) to detect 
and count fish in a publicly available dual-frequency 
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2014; Boswell et  al. 2019), and movement via key 
passageways (Bennett et  al. 2020). Common direct 
sampling methods including nets (e.g. seine, gill, 
fyke or trawl), traps, and line fishing can be invasive 
and introduce sampling bias (Kuriyama et  al. 2019; 
French et  al. 2021). Indirect sampling techniques 
such as visual census and baited or unbaited remote 
underwater video (BRUV/RUV) are alternatives to 
direct, invasive methods, but are ineffective when vis-
ibility is poor [e.g. in turbid waters or deep offshore 
habitats, and at night (Becker et al. 2011; Benoit-Bird 
and Lawson 2016; Sheaves et al. 2020; Kimball et al. 
2021)]. Acoustic camera monitoring (which uses 
sound reflectance, instead of light reflectance) offers 
a non-invasive survey method in underwater environ-
ments to overcome the obstacle of sampling where 
standard video imagery or visual census is unfeasible 
(Horne 2000).

Fisheries scientists have used acoustic cameras to 
monitor fish (and other animals) by detecting their 
direct acoustic image and/or their acoustic shadow 
(Horne 2000; Trenkel et  al. 2011; Martignac et  al. 
2015). For example, acoustic cameras have been used 
in saltmarsh habitats to analyse predator–prey inter-
actions (Boswell et  al. 2019) and fish movement in 
tidal passageways (Kimball et al. 2010; Bennett et al. 
2020); in areas of high turbidity caused by sedimen-
tation to estimate size and abundance of key demer-
sal fish (Artero et  al. 2021); and, in intermittently 
closed estuaries to determine the abundance and the 
direction of fish movement, and the distribution of 
different sized fish (Becker et  al. 2016, 2017). Cou-
pling of direct acoustic images and acoustic shadows 
has enabled identification of different species (Able 
et  al. 2014; Artero et  al. 2021). Furthermore, differ-
ent size classes of fish have been determined with 
high accuracy through the direct analysis of acoustic 
shadows (Langkau et al. 2012). While sampling fish 
using direct acoustic images or shadows is helpful 
when visibility is poor, as for normal video imaging, 
acoustic sampling produces vast amounts of data that 
require laborious and costly processing and analysis.

Automation techniques to overcome the challenges 
and costs of manually processing video footage are 
revolutionising monitoring in aquatic environments. 
For instance, a type of machine learning called deep 
learning (DL) uses convolutional neural networks 
(CNN) to analyse standard video footage to detect 
and classify fish (Mandal et  al. 2018; Villon et  al. 

2018; Salman et  al. 2020). Automatic detection and 
classification of fish increases the efficiency of moni-
toring the abundance of fish populations (Marini et al. 
2018; Ditria et al. 2020a, 2020b), tracking movement 
of fish (Lopez-Marcano et  al. 2021), measuring fish 
sizes (Álvarez-Ellacuría et al. 2020; Coro and Walsh 
2021), and monitoring behaviour patterns (Saberioon 
et al. 2017; Ditria et al. 2021). Similar approaches to 
automate the processing and analysis of acoustic data 
have been used to detect fish aggregations (Shah-
restani et al. 2017; Vatnehol et al. 2018; Tarling et al. 
2021), track the speed and direction of fish in trawls 
(Handegard and Williams 2008), track the direc-
tion, abundance and size of salmonids (Kulits et  al. 
2020), detect the presence/absence of tuna (Uranga 
et  al. 2017), and to identify and track marine mam-
mals such as seals (Hastie et  al. 2019). Although 
useful, these studies rely solely on the direct acous-
tic detection of the species of interest. Deep learning 
algorithms that simultaneously evaluate the direct 
and shadow detections might improve the accuracy 
of automation and, ultimately, provide a valuable tool 
for automated analysis of acoustic data.

Our goal was to use CNNs to train and detect fish 
from direct acoustic images, acoustic shadows, and 
the combination of direct images and shadows. This 
is a step towards being able to use automatic detection 
of direct and shadow detections from acoustic data for 
continuous monitoring of a wide range of metrics. We 
predicted that the model would be enhanced by train-
ing on both the direct and shadow detections rather 
than the direct detections alone.

Materials and methods

To achieve our aim of using acoustic camera data to 
automatically detect fish using deep learning (DL) 
models, we firstly acquired a dataset of labelled fish 
species sampled using DIDSON (dual-frequency 
identification sonar). DIDSON is a multi-beam 
high-frequency (1.1 or 1.8  MHz) sonar device that 
transmits acoustic pulses through the water to detect 
objects. Acoustic sounds are reflected when the 
sound wave meets an object of a different density to 
the medium in which the sound wave is propagated. 
DIDSON displays video-like images of the reflected 
acoustic echoes on an echogram, using colours and 
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colour intensity to represent the objects and strength 
of the signal (Martignac et al. 2015).

We annotated and trained a model to detect both 
the fish and shadow of the fish. To obtain abundance 
data the model detected fish and shadows separately 
in each image. We then used an automated post-pro-
cessing step selecting the maximum count of either 
fish or shadow detections (not both) in each image, 
generating the “combined” count. We then analysed 
the accuracy of the model using common perfor-
mance metrics (Fig.  1). We focussed on the most 
widely used measure of abundance in videos, MaxN, 

the maximum number of fish visible in a video in any 
one frame (Ellis and DeMartini 1995; Whitmarsh 
et al. 2016; Langlois et al. 2020).

Dataset

The data used for the DL model were sourced from 
a professionally labelled acoustic dataset that is pub-
licly available under a creative commons licence that 
permits use with acknowledgements (McCann et  al. 
2018). This dataset contains acoustic observation 
data sampled using DIDSON in the Ocqueoc River 

Fig. 1  Flow diagram 
of deep learning models 
trained on acoustic imagery 
to detect fish and fish shad-
ows. During post-process-
ing, count and MaxN was 
calculated for direct and 
shadow detections only and 
then merged to calculate 
the combined count and 
MaxN of direct or shadow 
detection
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in northern Michigan, USA, between 2013 and 2016. 
Each video is sorted and labelled with the fish spe-
cies known to be present. All videos used a window 
length of 2.5–12.5 m. To obtain enough training data, 
videos containing the two most common species, 
walleye (Sander vitreus) and common carp (Cyprinus 
carpio), were selected for training and testing of the 
DL model.

Although two species were selected from the 
dataset for training and testing, all data were pooled 
and labelled as ‘fish’ so the model could be trained 
and tested against different backgrounds. The two 
species grow to a similar size, ranging up to 80  cm 
in length. The carp to walleye ratio in this pooled 
dataset was approximately 2:1 both for direct and 
shadow. Because the different species did not occur 
in the same frame, we felt there would be bias if we 
trained and tested on ‘species’ because each spe-
cies had a different background the model may have 
learned to associate with species identification. 
Therefore, the goal was to test automatic identifica-
tion of ‘fish’, rather than to identify the different spe-
cies. From the total pool of walleye and carp videos, 
157 segments of video from 21  days of DIDSON 
deployments (stratified by day) were allocated to one 
of two datasets: training (115 segments) and testing 
(42 segments). Raw video resolution varied between 
1002 × 564 (47 segments) and 1920 × 1080 (110 seg-
ments), but in any case all videos were standardised 
to a scale of 1002 × 564 prior to processing. Each seg-
ment was unique to either training or testing, and seg-
ments from each day were randomly allocated to each 
of the datasets.

Manual annotation of imagery provided the 
‘ground-truth’ fish counts both to train the model and 
to evaluate performance. Images were extracted at 5 
frames per second. Using bounding boxes around the 
fish and shadows, both the direct and shadow detec-
tions of the fish were manually annotated in each of 
the extracted images (Table  1). To assist with iden-
tification, the annotator was able to play videos back 
and forth to increase confidence that the object in the 
video was moving and could be correctly identified 
as either ‘fish’ or ‘shadow’ (see animation in Online 
Resource 1 for an example of how movement was 
used to annotate our dataset).

Object detection model and performance metrics

We used a convolutional neural network (CNN) for 
object detection. Specifically, our model was trained 
using Faster-RCNN with a ResNet50 configuration, 
pre-trained using the ImageNet1k dataset (Massa and 
Girshick 2018). Model training, testing, and predic-
tion tasks were conducted on a Microsoft Azure Data 
Science Virtual Machine powered by an NVIDIA 
V100 GPU. Overfitting was mitigated by using the 
early-stopping technique (Prechelt 2012).

We tested the performance of our model using two 
key metrics of fish abundance: count-per-image and 
MaxN per video (for direct, shadow and combined 
detections). Count-per-image was calculated over 
a total of 1287 images, and was used to assess per-
formance on an image-by-image basis. MaxN was 
calculated for 42 video segments, and used to assess 
performance in an application context of provid-
ing a typical metric of abundance. For each of these 
metrics two performance criteria, precision (P) and 
recall (R), were determined for confidence thresholds 
between 5 and 95% in 5% increments. The confidence 
threshold is the level of prediction certainty required 
to state a detection. Precision measures the fraction of 
fish detections that were correct, and recall measures 
the fraction of fish actually present that were detected.

Overall performance for count-per-image and 
MaxN was determined by the F1 score, which repre-
sents the balance between precision and recall. F1 is 
calculated as follows:

Precision =
True positive

True positive + False positive

Recall =
True positive

True positive + False negative

Table 1  Numbers of annotations of acoustic imagery for the 
direct detections of fish and shadows of fish used in deep learn-
ing models

Annotations Direct Shadow

Training 7566 7764
Testing 1469 2189



837Aquat Ecol (2023) 57:833–844 

1 3
Vol.: (0123456789)

We checked for any systematic biases in false 
detections by examining the size and distance from 
camera of objects, and comparing these for false posi-
tives and false negatives against true positives. Dis-
tances from camera were extracted directly via DID-
SON software, and sizes were calculated as the area 
of bounding boxes as a percentage of the total image 
size, from predicted detections for true positives and 
false positives, and from manually annotated boxes 
for false negatives. For both distances and sizes, the 
frequency distributions of the three categories were 
compared using Kolmogorov–Smirnov two-sample 
tests on non-standardised frequency data, pairwise 
among the three detection types.

Results

The model was successful in automatically counting 
fish in acoustic imagery using either the direct detec-
tion, shadows, or a combination of both (Fig. 1). At 
a confidence threshold of 85%, shadows improved 
the direct F1-score from 0.79 to 0.90 for counts, 
and from 0.90 to 0.91 for MaxN. Performance of the 
model increased because shadow detections some-
times occurred when a direct detection was missed 
(see the example in Fig. 2).

For the count-per-image results, at both a lower 
(70%) and higher (85%) confidence threshold, our 
model performed best for the shadow detections alone 
and combined detections (Table 2; Fig. 3a). F1 scores 
were lowest for direct detections alone (Table 2).

For the MaxN per video results, at a lower (70%) 
confidence threshold, the model performed slightly 
better for shadow detections alone and combined 
detections than for direct detections alone (Table  3; 
Fig.  3b). However, at a higher confidence threshold 
(85%), the model performed nearly as well for all 
three methods of detecting fish, with the combined 
detections only marginally higher than the direct or 
shadow detections alone (Table 3; Fig. 3b).

In comparing the distances from camera and sizes 
of false detections against true positives, we found no 
pattern for distance from camera, but object detection 
size varied significantly among these detection types 
(Kolmogorov–Smirnov tests, all p values < 0.01; 

F1 = 2 ×
P × R

P + R

Fig.  4, noting that for visual interpretation, frequen-
cies are displayed standardised by total counts, 
whereas KS tests were on non-standardised data). 
Both types of false detections had a higher proportion 
of very small detections than for true positives, with 
marginally smaller images for false negatives than 
false positives. Most false detections were around 
10% or less of the total image area. These are small 
images as observable on screen, and do not necessar-
ily reflect fish sizes, which vary with distance from 
cameras.

Fig. 2  Example DIDSON image with ground-truthed fish 
count = 2. Detections shown in green (direct) and yellow 
(shadow) with probabilities, and counts given for 70% and 
85% confidence thresholds (CT). Panel a direct detection 
only, which underestimates fish count, and Panel b direct and 
shadow detections combined, which correctly estimates fish 
count at 70% CT, and underestimates by one at 85% CT
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Discussion

We have presented a successful method for automati-
cally detecting fish from acoustic imagery. The CNN 
reliably detected fish using either direct or shadow 
detections, or in combination, achieving high F1 
scores for all three methods of detection. This auto-
mated method has the potential to reduce the time 
and cost of manually counting fish using acoustic 
data, and particularly so when MaxN is the desired 
measure of fish abundance. The level of accuracy 
achieved is equal to or above that reported previously 
for CNNs on sonar imagery. Using a CNN model to 
detect eels swimming through a weir in Canada, Zang 
et al. (2021) reported high accuracy (0.89), although 
on a relatively small number of videos. These authors 
had previously achieved higher accuracy (0.99) using 
a similar model in a controlled laboratory environ-
ment (Zang et  al. 2021), but found that the model 
performed poorly on field data (0.5). Automated 
detection of salmon in sonar imagery using a CNN in 
conjunction with optical flow to detect pixel changes 
between sequential frames yielded accuracy of 0.8 
(Kulits et  al. 2020). The presence of large schools 
of mullet swimming along the coast have also been 
detected with accuracy of 0.89 (Tarling et al. 2021). 
All of these methods used only direct detection, not 
shadows. The current paper adds substantially to the 
view that CNNs will be very useful for automatically 
detecting fish versus no-fish in sonar imagery. Reli-
able detection of fish using DL techniques such as 
CNNs is clearly possible, and as the field develops, 

Table 2  Count per image 
results of a deep learning 
model trained on acoustic 
imagery of direct and 
shadow detections of fish, 
at confidence thresholds of 
70% and 85%

Count was determined 
for direct and shadow 
detections separately, and 
results were then merged to 
give the combined count. 
True positives as proportion 
of Ground Truths are same 
as Recall and are not shown 
again

Detections Direct Shadow Combined

Confidence threshold 0.70 0.85 0.70 0.85 0.70 0.85

F1 score 0.81 0.79 0.91 0.88 0.90 0.90
Precision 0.81 0.92 0.89 0.96 0.88 0.95
Recall 0.81 0.70 0.93 0.82 0.93 0.85
Ground-truths (GT) 1469 1469 2189 2189 2273 2273
True positives (TP) 1192 1027 2027 1788 2121 1934
False negatives (FN) 277 442 162 401 152 339
FN proportion of GT 0.19 0.30 0.07 0.18 0.07 0.15
True negatives (TN) 174 221 6 10 0 0
False positives (FP) 280 90 238 80 297 104

Fig. 3  Precision and recall scores for the combined detection 
of fish for a Count per image, and b MaxN per video. Confi-
dence intervals are in 5% increments, and confidence thresh-
olds of 70% and 85% are indicated for comparison of perfor-
mance (these are the two CTs reported in Tables 2 and 3)
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we encourage others to consider the inclusion of 
shadow detections.

Our results indicate that shadows can be a useful 
addition to include in model training and predicting 
when using CNNs, and probably for any other auto-
mation technique where shadows are present in the 
acoustic data being analysed. Previous studies using 
semi-autonomous fish counting methods have sug-
gested that acoustic shadows are an impediment that 

reduced the accuracy of software solutions (Eggleston 
et  al. 2020; Perivolioti et  al. 2021). We have shown 
convincingly that if shadow information is included 
in training of detection algorithms, shadows detection 
can improve performance. We suspect that previous 
reports of difficulties with shadows adversely affect-
ing fish counts might have resulted from a lack of 
shadow input in model training, or perhaps from shad-
ows being unusable. Although we have demonstrated 

Table 3  MaxN per video 
results of a deep learning 
model trained on acoustic 
imagery of direct and 
shadow detections of fish, 
at confidence thresholds of 
70% and 85%

MaxN was determined 
for direct and shadow 
detections separately, and 
results were then merged 
to provide the combined 
MaxN. True positives 
as proportion of Ground 
Truths are same as Recall 
and are not shown again

Detections Direct Shadow Combined

Confidence threshold 0.70 0.85 0.70 0.85 0.70 0.85

F1 score 0.83 0.90 0.89 0.90 0.88 0.91
Precision 0.76 0.96 0.88 0.94 0.83 0.95
Recall 0.91 0.85 0.91 0.87 0.93 0.87
Ground-truths (GT) 80 80 106 106 108 108
True positives (TP) 73 68 96 92 100 94
False negatives (FN) 7 12 10 14 8 14
FN proportion of GT 0.09 0.15 0.09 0.13 0.07 0.13
True negatives (TN) 0 0 0 0 0 0
False positives (FP) 23 3 13 6 20 5

Fig. 4  Frequency distribu-
tion of detection area for 
different detection types. 
Frequencies for true 
positive (TP), false positive 
(FP) and false negative 
(FN) detections are shown 
standardised as a propor-
tion of the total number of 
detections for that detection 
type. Standardisation sim-
plifies visual analysis since 
the total counts for true 
positives were much greater 
than either false category. 
Detection area is reported 
as area of detection box as 
a percentage of total image 
area, a proxy for the size of 
the fish or shadow as actu-
ally observed in the frame
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the usefulness of shadows in the imagery analysed, 
further investigation will be required to test how gen-
eralisable this finding is to DIDSON imagery more 
broadly. Shadow formation is affected by factors such 
as the angle of the acoustic camera to the substrate, 
substrate complexity, and fish orientation and behav-
iour. We largely used imagery in which fish were 
migrating up and down stream, swimming perpendic-
ularly to cameras, throwing relatively large and eas-
ily detected shadows. When fish milled around, per-
haps for foraging, orientation and direction changed 
frequently and shadows were often small or thin as a 
smaller body profile was exposed to the sonar, with 
poorer detectability. The usefulness of shadows for 
identification of different species (or morphospecies) 
in manual analysis of DIDSON imagery has been 
pointed out by Langkau et  al. (2012), although they 
suggest that accuracy is poor for smaller sized indi-
viduals. Further experimentation into the usefulness 
of shadows is warranted, to distinguish the roles of 
camera position and orientation relative to fish, and 
substrate type. Where the morphology of background 
substrate is known, the relationships between camera 
position and the distance between fish and shadow 
detection can potentially provide a metric of fish posi-
tion within the water column.

Automatic detection of species (or morphospecies) 
using multi-class models will be an important future 
step in improving the value of automating acoustic 
monitoring. At this stage, however, both manual and 
automatic species identification has proven problem-
atic due to the nature of acoustic data (Martignac et al. 
2015). High accuracy of manual species identification 
can occur when species have distinct morphological 
features (Martignac et  al. 2015; Jones et  al. 2021), 
and automation should also be successful for species 
that show clear morphological differences. Automatic 
species identification has been partially successful for 
eels (Zang et  al. 2021), but attempts for other types 
of fish have had limited success (Rogers et al. 2004; 
Jones et  al. 2021). Automatic species identification 
could be improved by analysing behavioural char-
acteristics, such as tailbeat frequencies, which have 
been used successfully in manual analysis of acous-
tic data for species identification (Kang 2011; Helm-
inen et al. 2021). Other behaviours such as swimming 
speed and feeding activities could also be investigated 
to improve automation and combined with length data 
where only particular species are known to obtain 

sizes above certain limits. Sequential non-maximum 
suppression (SeqNMS), an object tracking method 
where the model examines neighbouring images in a 
video to improve the accuracy of detection, has been 
used to automatically detect the direction and speed 
of fish in underwater videos (Lopez-Marcano et  al. 
2021). SeqNMS could also prove useful for acous-
tic data for species identification. The unique graz-
ing behaviour exhibited by fish in seagrass has also 
been automatically tracked (Ditria et  al. 2021), and 
with some refinement to the model, this may also be 
a useful method to detect feeding behaviours to dif-
ferentiate among species in acoustic data, so long as 
seagrass does not adversely affect quality of shadows 
or the acoustic imagery overall.

Apart from DL methods, automating and semi-
automating the analysis of acoustic data has been 
performed using classic machine learning techniques. 
Commercially available software called Echoview 
(https:// echov iew. com) allows users to semi-automate 
the acoustic data analysis through training of prede-
fined algorithms (Boswell et  al. 2008). Some appli-
cations that demonstrated a reduction in analysis 
time or successful semi-automation of the process 
using Echoview include the tracking of migrating 
fish (Kang 2011; Helminen and Linnansaari 2021), 
counting fish (Kang 2011; Eggleston et  al. 2020), 
and monitoring behaviour such as tailbeat frequen-
cies (Mueller et al. 2010; Kang 2011; Helminen et al. 
2021). Other studies have demonstrated the useful-
ness of more ‘traditional’ ML techniques using sta-
tistics and/or advanced algorithms for classifying, 
counting, and sizing of fish using acoustic data (Han 
et  al. 2009; Bothmann et  al. 2016; Jing et  al. 2017; 
Lawson et  al. 2019). We suggest that because all of 
these methods require specialised statistical skills for 
each new application, a DL model, once evaluated 
and performing reliably, will be an easier method 
for scientists to apply. Even the problematic detec-
tions of very small objects in the current study might 
in future be overcome as resolution of imagery from 
acoustic cameras continues to improve. The DIDSON 
is already being superseded, for example, by imaging 
sonar that can operate at 3  MHz, improving resolu-
tion at shorter ranges. In terms of the amount of effort 
required for training, in the order of several thousand 
annotations typically will be required to achieve suit-
able model performance (Sheaves et al. 2020). While 
the accuracy required for applied automation varies 

https://echoview.com
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with study objectives, generally F1 scores above 0.8 
are considered useful, and above 0.9 very good.

Our model performed well using direct, shadow, 
and the combination of these detections; however, 
we acknowledge that our study used a limited data-
base with low densities of fish present in each image 
(typically 3 or fewer). Even for manual counting of 
acoustic imagery, higher densities can render counts 
unreliable (Horne 2000), and dense schooling behav-
iour makes automated tracking of individual fish diffi-
cult (Handegard and Williams 2008; Lopez-Marcano 
et al. 2021). Despite the challenges, high densities of 
fish are common in any form of video imagery and 
higher densities of fish in acoustic images should be 
included in training and testing to improve the usabil-
ity of the model. Post-processing steps such as vary-
ing confidence thresholds, the use of SeqNMS, and 
statistical adjustment equations could assist in over-
coming the issue of individuals obscuring other indi-
viduals in acoustic imagery, as has been demonstrated 
in underwater videos (Connolly et al. 2021).

We have shown that using a DL technique such as 
CNN can automatically detect fish in acoustic data 
and has the potential to substantially improve the effi-
ciency of acoustic data analysis. For the short videos 
analysed here, with relatively low fish abundances, 
manual extraction of MaxN data took a fish expert 
on average 1.8 min per min of video (SE 0.16). Com-
puter estimates of MaxN took about half the time in 
the current study, at 0.95  min per min of video (no 
variation, so no SE). Much faster computer speeds 
are possible, however, using parallelisation; e.g. using 
two servers in parallel doubles the processing speed. 
We have also highlighted the usefulness of acoustic 
shadow detections in DIDSON data to improve model 
accuracy for counting of fish. This method is suita-
ble for fisheries-independent monitoring of exploited 
species to inform fisheries stock assessments, and 
quantifying use of fish passageways when fish densi-
ties are low. The approach needs further investigation 
at higher fish densities and for species identification.
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