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Abstract Environmental monitoring guides conserva-
tion and is particularly important for aquatic habitats
which are heavily impacted by human activities. Under-
water cameras and uncrewed devices monitor aquatic
wildlife, but manual processing of footage is a significant
bottleneck to rapid data processing and dissemination of
results. Deep learning has emerged as a solution, but its
ability to accurately detect animals across habitat types
and locations is largely untested for coastal environ-
ments. Here, we produce five deep learningmodels using
an object detection framework to detect an ecologically
important fish, luderick (Girella tricuspidata). We
trained two models on footage from single habitats
(seagrass or reef) and three on footage from both habitats.
All models were subjected to tests from both habitat
types. Models performed well on test data from the same
habitat type (object detection measure: mAP50: 91.7 and
86.9% performance for seagrass and reef, respectively)
but poorly on test sets from a different habitat type (73.3
and 58.4%, respectively). The model trained on a com-
bination of both habitats produced the highest object
detection results for both tests (an average of 92.4 and
87.8%, respectively). The ability of the combination

trained models to correctly estimate the ecological abun-
dance metric, MaxN, showed similar patterns. The find-
ings demonstrate that deep learning models extract eco-
logically useful information from video footage accurate-
ly and consistently and can perform across habitat types
when trained on footage from the variety of habitat types.
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Introduction

People have been monitoring and counting wildlife for
millennia, collecting invaluable data for several uses
such as informing conservation, tracking population
trends, and estimating abundance or biomass for fisher-
ies stock assessments (Goldsmith 2012). As the world
changes and ecosystems experience severe and
sustained declines in extent and condition (Maxwell
et al. 2016), monitoring wildlife has never been more
important. The speed and scale at which the natural
world is changing also mean that monitoring and
analysing data quickly enough to be able to respond
has become a global challenge. Aquatic coastal habitats
are among the most severely affected by anthropogenic
activities (Davidson 2014; Tulloch et al. 2020), despite
being renowned for their roles in fisheries productivity,
coastal protection, carbon sequestration, and biodiversi-
ty (Sievers et al. 2019; Silliman et al. 2019). The chal-
lenge of developing rapid, effective monitoring in coast-
al aquatic habitats is thus imperative.
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The advent of cheap, high-resolution cameras has
enabled large amounts of underwater data to be collect-
ed without many of the logistical issues encountered
using manual methods of data collection. For example,
cameras can be deployed in situ for hours to months
without the need for human interaction (Podder et al.
2019). Additionally, the presence of humans and their
equipment often causes animals to display avoidance
behaviour and make data collection unreliable (Frid and
Dill 2002). The ease with which data can now be col-
lected, however, has exacerbated the challenge of being
able to analyse data quickly, with manual analysis of
photo and video footage laborious (Weinstein 2018).
Scientists consequently need tools to analyse an enor-
mous amount of data and quickly extract useful ecolog-
ical information for management and conservation
purposes.

Machine learning technologies have emerged as ele-
gant solutions for automating the analysis of video and
image-based datasets. Machine learning is broadly
categorised as algorithms that generate predictions
based on pattern detection in data (Christin et al.
2019). Traditional machine learning models such as
support vector machines (SVMs) have been used to
classify marine species in underwater imagery
(Spampinato et al. 2010; Beijbom et al. 2012). Howev-
er, these models are limited in their ability to process
raw, unaltered images as the data require manual feature
extraction and the associated software and domain ex-
pertise to do so (LeCun et al. 2015). Deep learning is a
technology under the umbrella of machine learning that
can outperform traditional machine learning algorithms
when presented with underwater imagery (Villon et al.
2016). Deep learning frameworks consist of computa-
tional layers that can process raw data images and
automatically extract features (LeCun et al. 2015). Ad-
ditionally, deep learning models improve with higher
volumes of training data relative to standard machine
learning algorithms (Alom et al. 2019). Scientists have
recently utilised deep learning technology (i.e. classifi-
cation algorithms) to identify fish in aquatic ecosystems
(Villon et al. 2018; dos Santos and Goncalves 2019;
Salman et al. 2019b; Sheaves et al. 2020). More recent-
ly, object detection algorithms have been used to count
individual fish of a target species to provide estimates of
abundance with greater accuracy and speed than
humans (Ditria et al. 2020). Although this greatly in-
creases efficiency, repeatability, and accuracy of image-
based data analysis (Weinstein 2018), training

algorithms takes time and imposes high initial costs
(Christin et al. 2019). Flexibility and robustness in iden-
tifying species across large spatial and temporal scales
are therefore key for deep learning to be a practical
method to replace manual analysis.

The use of object detection to identify and count fish
in coastal environments presents a unique set of chal-
lenges. For example, many factors may affect the
model’s ability to detect fish, such as water turbidity,
lighting variation, occlusion due to schooling fish, and
changes in fish orientation (Mandal et al. 2018). Further,
fish often use different habitats, whether for daily mi-
grations among habitats to feed and shelter or ontoge-
netic habitat shifts (Lecchini and Galzin 2005; Igulu
et al. 2014). Inter-habitat differences might mean that a
deep learning model trained on one habitat will not be
reliable for others. For instance, structural complexity
may influence model performance, as background con-
fusion and foreground camouflage might compromise
accuracy (Salman et al. 2019a).

To maximise efficacy and accuracy of monitoring
and analysis, deep learning models must be robust to
changes in image backgrounds (e.g. across habitats).
However, quantitative tests of performance across hab-
itats are not available in the literature, so we do not know
how a model trained on one habitat will perform on
another. This is a common challenge in computer vision
known as domain shift, where the data the model was
trained on is not an accurate representation of real-world
data (Kalogeiton et al. 2016). Generally, the perfor-
mance of the deep learning model will depend on the
environment, or domain, it was trained on (Kalogeiton
et al. 2016). Here, we test the potential for deep learning
algorithms to work effectively across habitats using
luderick (Girella tricuspidata) as a target speices.
Luderick are found in multiple habitats including
seagrass meadows and rocky reefs along the temper-
ate waters of east coast Australia and northern New
Zealand (Abrantes et al. 2015). They are a recrea-
tional and commercial fisheries species and are im-
portant herbivores that control algal growth on reefs
and in seagrass meadows affecting plant growth
either positively through removal of epiphytic algae
(Ferguson et al. 2015) or adversely though direct
grazing of seagrass (Wendländer et al. 2020). By
assessing the capacity of deep learning algorithms
to transcend habitats across spatial scales, we pro-
vide evidence of the applicability of this technology
to assist in monitoring and conservation efforts.

  698 Page 2 of 8 Environ Monit Assess         (2020) 192:698 



Materials and method

Datasets

The training dataset was collected using submerged
action cameras (Haldex Sports Action Cam HD 1080p
and GoPro 8 Black 1080p) deployed in two dissimilar
habitats frequented by luderick, seagrass meadows
and rocky reefs, in the Tweed River estuary on the
border of Queensland and New South Wales, Australia
(− 28.169438, 153.547594). Cameras were positioned
to collect footage at multiple angles and backgrounds to
ensure variety in the training data. Footage was also
collected at several points in time to increase variability
in other environmental factors such as lighting and water
turbidity. Videos were trimmed to remove footage with-
out fish and split into 5 frames per second. Polygonal
segmentation masks were manually drawn around the
region of interest (ROI), here individual luderick. The
algorithm extracts features automatically and begins to
recognise patterns which “train” the computer to asso-
ciate these with the ROI (LeCun et al. 2015). Five
datasets, each consisting of ~ 4700 annotated luderick,
were used for training. These contained seagrass footage
only, reef footage only, or a combination of both habi-
tats using a randomised subset of the videos. Three
combination training datasets were created to test the
stability and reproducibility of this method (Fig. 1). The
videos used for the two test datasets did not appear in the
training data (Fig. 1). These comprised 62 videos with
approximately 1500 luderick annotations in each test
used as the ground truth to quantify the model’s ability
to accurately detect and count fish (Fig. 1). We incor-
porated footage from different days in both the test and
the training set, so the model was only tested for its
ability to detect fish in different habitats (domains) not
throughout time.

Convolutional neural network

The object detection framework we used is an imple-
mentation of Mask R-CNN developed by Massa and
Girshick (2018). Model development was conducted
using a ResNet50 configuration, pre-trained on the
ImageNet-1k dataset. Model training, testing, and pre-
diction tasks were conducted on a Microsoft Azure Data
Science Virtual Machine powered by an NVIDIA V100
GPU. Overfitting was minimised by using the early-
stopping technique (Prechelt 1998).

Performance measurements

We tested how well the model performed at object
detection and measuring fish abundance. Object detec-
tion performance was determined for each test as the
mean average precision 50 value (mAP50, Everingham
et al. 2010). This is the ability of the algorithm to
accurately fit a segmentation mask to at least 50% of
the ROI. Fish abundance performance was tested using
MaxN, the maximum number of fish of the target spe-
cies in any one frame, the most widely reported measure
in ecological studies using video footage (Whitmarsh
et al. 2017). How accuratelyMaxNwas estimated by the
model was calculated using an F1 score, the harmonic
mean of precision and recall (Goutte and Gaussier
2005). True positives (correctly identified luderick),
false negatives (missed luderick), and false positives
(incorrect luderick identifications) are all considered
when calculating precision and recall (Buckland and
Gey 1994).

Results and discussion

For object detection, the seagrass and reefs models did
not perform as well when trained on footage exclusively
from the other habitat (Fig. 1). However, performance
on tests by models trained on footage from the same
habitat or from a combination of habitats was all high (>
87%) (Fig. 1, Appendix 2), indicating that the algo-
rithm accurately fitted segmentation masks around
luderick. The mAP50 test scores for the combina-
tion trained model were within 1% of the model
for seagrass and within 3% for the reef habitat
(Fig. 1, Appendix 2).

For estimating abundance, the overall pattern was
similar; all three combination models gave high perfor-
mance results (F1 range 87–92%), as did training sin-
gularly on the habitat being tested (Fig. 1). For the
seagrass test, combination training was almost the same
as the seagrass-only trained model (F1 91.1% vs 91.5%,
respectively), whereas for the reef test, combination
training was slightly lower than reef training (F1
87.1% vs 88.8%, respectively, Fig. 1). The combination
training achieved the lowest number of false negatives
for both tests and most closely enumerated the true
number of luderick (Table 1, Appendix 1). In both tests,
the model trained on the alternative habitat gave the
worst performance.
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Deep learning models trained on a combination of
habitats produced the best object detection (mAP50)
and either the best or nearly as good abundance esti-
mates (F1, Appendix 2). As expected, models also per-
formed very well when tested on the same habitat they
were trained on but were poor at object detection and
estimating abundance when tested on the opposite hab-
itat. Combination training had the lowest number of
false negatives and most closely enumerated the true
number of luderick. The trained reef dataset, however,

had the lowest number of false positives for both tests,
suggesting that models trained on this dataset were able
to account for other environmental factors that could
have been confused as luderick, such as other similar
looking fish species. In general, the reef footage is
comprised of a more complex background, with regu-
larly changing lighting conditions on the substrate and
greater fish species richness than in seagrass datasets.
While the seagrass datasets contain images with com-
paratively low background complexity, the water was

Fig. 1 a Trimmed videos from the original dataset from two
habitats (seagrass and reef) were split into two training sets, with
a random selection of the annotations from both training sets used
to create the three combination training sets. Two separate test
datasets were created from the remaining data from the seagrass
and reef habitats. b Performance metrics of each model (seagrass

trained, reef trained, and the three combination trained datasets) on
predicting test data from a reef or seagrass habitat. Object detection
performance is reported as mAP50. Abundance performance is
reported as F1 score, denoting how well the model estimated
MaxN per video
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often more turbid, and picture clarity was thus affected
(Fig. 2). Differences between habitats may explain why
models trained on the singular opposite habitat per-
formed poorly and why the seagrass-trained model per-
formed particularly poorly when tested on reef footage.
The close test results for all three combination-trained
models suggest that they were robust in predicting
across habitats. However, more tests from different reef
and seagrass locations may be needed to determine the
effectiveness of this method across spatial scales in
novel environments.

To maximise the effectiveness of monitoring and the
reliability of analyses, algorithms must prove robust
across habitat types and often across distant locations.
We have previously shown that deep learning models
can have equally high performance in seagrass habitats
from a different estuary than where the training footage
was taken (Ditria et al. 2020). The transferability of
algorithms from one habitat type and location to novel
habitat types and locations strengthens this as an
alternative option to manual analysis. However, this is
not always the case. For example, Xu and Matzner
(2018) found that a deep learning model for fish detec-
tion trained on two sites, and tested on the third, did not
perform as well as those trained and tested on the same
sites. This low transferability may have been due to
variable water clarity making it difficult to detect fish
in video footage (Xu andMatzner 2018). Further testing
of fish detection algorithms across habitats and locations
is required; training is improved when some variation in
habitats is captured, but new training may not be

required for every new habitat or location across a
species distribution. An additional advantage of deep
learning is that unlike traditional machine learning algo-
rithms, deep learning algorithms are not saturated at
higher volumes of data, so additional training data will
generally improve the overall output performance of the
existing dataset (Moniruzzaman et al. 2017; Sarwar
et al. 2019; Tao et al. 2019). Collectively, this suggests
that adding training from newly encountered habitats
can continuously improve monitoring results.

Although environmental issues such as different
backgrounds, turbidity, lighting, and colour hue are
not dissimilar to those faced by humans when identify-
ing fish from videos, deep learning algorithms can out-
perform humans when faced with ambiguous images
(Villon et al. 2018; Ditria et al. 2020). Mask R-CNN can
“learn” that the unselected confounding background
pixels are not the region of interest and do not require
complex pre-processing of images for background sub-
traction (Massa and Girshick 2018). Our method is,
however, only as good as the training data it receives.
Supervised deep learning models require manually la-
belled data to learn the input categories (here luderick).
If the quality of manually annotated data is poor, for
example, if other fish species are misidentified and
labelled as luderick, performance may drop (Rawat
and Wang 2017). Comparing model performance
against humans and finding robust statistical methods
to account for manual training error rate would be
beneficial to further understand the potential of deep
learning as a monitoring method.

Table 1 Summary of model performance. Ground truth is the number of fish in videos, and estimated fish is the number detected by the
model (the sum of true positives and false positives)

Test Training Ground truth Estimated fish True positive False positive False negative

Seagrass

Seagrass 105 121 99 22 6

Reef 105 81 75 6 30

Combination 1 105 125 102 20 3

Combination 2 105 114 96 9 9

Combination 3 105 115 98 10 7

Reef

Seagrass 128 97 11 86 17

Reef 128 137 120 17 8

Combination 1 128 156 118 28 10

Combination 2 128 159 119 31 9

Combination 3 128 145 115 17 13
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Given our rapidly changing world, using robust and
flexible deep learning algorithms to monitor and track
changes in species occurrence and abundance across
entire spatial distributions is important. Efficient moni-
toring of luderick, for example, could benefit coastal
ecological science as luderick make up a significant
component of the total fish biomass on temperate reefs
on the east coast of Australia and are important algal
grazers (Ferguson et al. 2015). Abundance data for
luderick are currently limited and geographically patchy
(Abrantes et al. 2015), and there is a suggestion that their
numbers have declined substantially at the northern
(warmer) end of their range in southeast Queensland in
recent decades (Pollock 2017). Waters along the south
east coast of Australia are experiencing a warming rate
over three times the global average (Ridgway 2007),
leading to the tropicalisation of historically temperate
reefs (Hobday and Pecl 2014; Vergés et al. 2018), and
southward range shifts have been documented for sev-
eral fish species here (Townhill et al. 2019). A south-
ward shift in luderick distribution will reduce their role
as a key grazer at the current northern limit of their
distribution. Monitoring changing range shifts has be-
come a necessary task for management and conserva-
tion of functional habitats, and implementing deep
learning solutions to analyse the large amounts of data
available is promising. Deep learning algorithms, when

trained across a variety of habitat types, could assist in
tracking distribution shifts and changes in population
sizes across a species range.

Conclusions

Deep learning is emerging as an accessible and alterna-
tive method to manage and extract information from
large volumes of raw video footage. The use of a diverse
training dataset consisting of different habitats and a
range of environmental conditions proved to be the most
robust and flexible model when analysing footage from
different habitats. These models can continually be
added to without any adverse effects on performance.
Deep learning has the potential to offer rapid data anal-
ysis for monitoring species across locations with high
efficiency and a high level of accuracy and consistency.
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