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Studying and quantifying behaviour is important to understand how animals interact with their envi-
ronments. However, manually extracting and analysing behavioural data from the large volume of
camera footage collected is often time consuming. Deep learning techniques have emerged as useful
tools in automating the analysis of certain behaviours under controlled or laboratory conditions, but the
complexities of using raw footage from the field has resulted in this technology remaining largely un-
explored as a possible data analysis alternative for animals in situ. Here, we use deep learning techniques
to automate the analysis of fish grazing behaviour from real-world field imagery. We collected video
footage in sea grass meadows in Queensland, Australia, and trained models on a training data set of over
3000 annotations. We used a combination of dense optical flow to assess pixel movement in underwater
footage, spatiotemporal filtering to increase accuracy, and deep learning algorithms to classify grazing
behaviour of luderick, Girella tricuspidata. When tested on novel videos the model had not seen in
training, the model correctly identified nearly all individual grazing events. Deep learning shows promise
as a viable tool for determining animal behaviour from underwater videos, and with further develop-
ment offers an alternative to current time-consuming manual methods of data extraction.

© 2021 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

The way researchers study animal behaviour has evolved rapidly
over the last few decades. New methods are proving to be impor-
tant in understanding complex biological processes, and recent
technological advances have provided techniques to solve the
challenges of traditional data collection and analytical methods
(Hughey, Hein, Strandburg-Peshkin, & Jensen, 2018). Historically,
trained scientists would directly study and quantify animal
behaviour in situ, limiting the number of direct observations that
could be made as well as the spatial and temporal resolution of the
observations (Altmann, 1974). More recently, techniques and
equipment such as acoustic telemetry, accelerometers and GPS tags
have become popular in monitoring animal behaviour (Espinoza,
Farrugia, Webber, Smith, & Lowe, 2011; Ladds et al., 2017;
Browning et al., 2018). However, these devices require manual and
invasive application techniques that also limit sample size due to
cost and logistics. Alternatively, cameras are widely used to obtain
behavioural data and capture information both on animals and
their interactions with the environment. Camera techniques allow
the study of these behaviours and interactions on a fine spatial
scale without the need for invasive procedures (Hughey et al.,

* Corresponding author.
E-mail address: ellen.ditria@griffithuni.edu.au (E. M. Ditria).

https://doi.org/10.1016/j.anbehav.2021.04.018

2018). Despite this, the use of camera techniques in quantitative
behavioural studies is often hampered by time-consuming manual
analysis of animal behaviour data from video footage (Han,
Taralova, Dupre, & Yuste, 2018; Weinstein, 2017).

Deep learning techniques are emerging as a useful solution to
assist with the data analysis bottleneck often encountered by
manual methods of video analysis. Deep learning is a subcategory
of machine learning that has begun to emerge in the environmental
sciences due to its ability to automatically process raw videos and
images, data that historically needed to be analysed manually to
extract information. Deep learning frameworks consist of a number
of computational layers that can process raw data images and
automatically extract features at the pixel level, unlike traditional
machine learning algorithms, such as support vector machines,
which require human input to manually extract features for the
algorithm to recognize (LeCun, Bengio, & Hinton, 2015). Deep
learning methods can perform faster than humans and are often
equal to or more accurate than manual analysis (Villon et al., 2018;
Torney et al., 2019). Given the advantages of deep learning, the use
of these methods for analysing video data is beginning to be
applied in animal behaviour. Several studies have been able to
detect the presence of animals and their behaviours and activity
using acoustic data recordings (Strout et al., 2017; Himawan,
Towsey, Law, & Roe, 2018; Xie & Zhu, 2019). However, for
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nonvocal species, this approach is not suitable. Deep learning al-
gorithms have also been implemented to extract behaviour infor-
mation from video and images, although largely through efforts in
highly controlled environments (Valletta, Torney, Kings, Thornton,
& Madden, 2017; Yang et al., 2018; Xu, Bennamoun, An, Sohel, &
Boussaid, 2019). Field data present substantial challenges for
automating the analysis of behaviour relative to standardized lab-
oratory tests. Animals often appear at different angles and dis-
tances to the camera, or are only partially visible, making not only
behaviour difficult to determine but, in some cases, also the
detection of the animal itself (Norouzzadeh et al., 2018; Sun et al,,
2018; Nguyen et al., 2019). Deep learning models must be
adequately trained on these different scenarios to perform
adequately, which can require a substantial amount of training
data. However, deep learning techniques have proven to be well
suited to inferring information from objects of interest varying in
size and shape, even if partially obscured, so they do have the po-
tential for behavioural data analysis in field studies (Long,
Shelhamer, & Darrell, 2015).

Dense optical flow is a method of analysing the directional
movement of all pixels between frames of video footage
(Farneback, 2003). Optical flow algorithms have been used to assess
movement since the 1980s (Gultekin & Saranli, 2013; Walker,
Gupta, & Hebert, 2015), but have only recently been coupled with
deep learning algorithms to more accurately analyse movement
from videos. Deep learning and dense optical flow have proven to
be complementary technological tools in assessing movements
such as sow nursing behaviour in agricultural livestock (Yang et al.,
2018). However, the combination has rarely been used for wild
animals. In one of the few examples, Golkarnarenji et al. (2018)
used dense optical flow and deep learning algorithms to identify
the Baw Baw frog, Philoria frosti, by identifying moving pixels in
frames and separating them from still, empty frames in large vol-
umes of data from camera trap footage. This study pointed to the
advantages of using deep learning algorithms by showcasing their
ability to automatically remove vast numbers of empty frames and
thus dramatically reduce manual processing time.

Utilizing dense optical flow and deep learning algorithms in
aquatic environments presents a unique set of challenges. Although
deep learning has been used for identifying and counting aquatic
species from above-water footage (Jovanovi¢, Svendsen, Risojevic,
& Babi¢, 2018; Gray, Bierlich et al., 2019; Gray, Fleishman et al.,
2019; Zhou et al., 2019), surface behaviours constitute only a sub-
set of behaviours exhibited by many aquatic animals. Fish behav-
iour in particular is relatively underrepresented in the literature
compared with other vertebrates, despite fish having twice the
number of species of birds and mammals combined (Rosenthal,
Gertler, Hamilton, Prasad, & Andrade, 2017). This is likely to be
due to logistical difficulties and poor-quality footage produced from
collecting and analysing data in underwater environments (Sun
et al., 2018). To avoid these environmental difficulties, most
footage taken for deep learning analysis in aquatic ecosystems has
primarily been attempted in coral reef habitats, which have envi-
ronmental advantages compared to other aquatic habitats, such as
high visibility and light (Xu & Matzner, 2018).

The species of interest in this case study is a common herbivorous
fish in coastal waters in eastern Australia, the luderick, Girella tricus-
pidata. This species displays an identifiable sideways sweeping mo-
tion when stripping epiphytic algae from blades of sea grass. Using
this feeding behaviour as a target, we determined whether the
combination of deep learning and dense optical flow techniques could
distinguish between algal grazing and nongrazing (swimming) be-
haviours in this species. In doing so, we developed automated
behavioural analysis of animal feeding in aquatic environments,
something not previously attempted from in situ underwater videos.

METHODS
Training Data Set

Free-swimming luderick were recorded using submerged action
cameras (Haldex Sports Action Cam HD 1080p) in the Tweed River
estuary on the border of Queensland and New South Wales,
Australia (-28.169438S, 153.547594E), between February and July
2019. Each sampling day, six cameras were deployed for 1 h over a
variety of sea grass patches with varying angle and camera place-
ment to ensure a variety of backgrounds and fish angles were
captured. Videos were manually trimmed for training to contain
footage of luderick and were split into 25 frames/s for manual
annotation of still images. Segmentation polygons were drawn
around individual luderick and were annotated as either grazing or
nongrazing. The training data set was balanced to include
approximately an equal number of both behaviours to avoid pre-
diction bias from having disproportionate training data for one
particular behaviour. This is important as training only on a single
behaviour would increase the likelihood of that behaviour being
predicted by the algorithm, resulting in a greater number of false
positives. Algal grazing behaviour was defined from the point when
a fish placed its mouth on a sea grass blade until it left the blade.
Our resulting training data set consisted of 3396 annotations which
took a total of 7.25 h to label (approximately eight annotations
manually generated per minute).

Convolutional Neural Network and Dense Optical Flow

The deep learning algorithm used is called ResNet50, a widely
used framework developed for image classification (He, Zhang, Ren,
& Sun, 2016), which was pretrained on the ImageNet-1k data set
(http://www.image-net.org). Model training, testing and prediction
tasks were conducted on a Microsoft Azure Data Science Virtual
Machine powered by an NVIDIA V100 GPU via a desktop computer.
Models took a total of approximately 3.5 h to reach 40 000 training
iterations (where the model has ‘studied’ the whole training data
set 40 000 times). Optical flow data were generated from the raw
video images based on the relative movement of pixels between
frames using a motion estimation algorithm (Farneback, 2003).
Motion estimation was conducted across two adjoining frames for
each annotated polygon (i.e. luderick), and output as a red-green-
blue (RGB) image (Fig. 1; Farneback, 2003). Each polygon from
the optical flow output image was used to train the deep learning
model. This model classified the behaviour within the polygon of
the luderick. Three models were trained and tested on the same
data sets to account for variation in the training data due to ran-
domized data augmentation. A standard data augmentation tech-
nique was employed, random horizontal flipping, where random
frames from 50% of the data set are chosen and inverted to increase
the volume of training data.

Spatiotemporal Filtering and Data Interpolation

Grazing behaviour occurs over several frames of video footage,
yet our metrics to quantify accuracy are reliant on predictions per
frame. Model accuracy can be enhanced when knowledge of pre-
vious and subsequent frames is considered by the algorithm. To
achieve this, we applied spatiotemporal filtering (STF) to remove
fleeting temporal anomalies in the model's predictions. If the
model incorrectly identifies one frame as demonstrating grazing
behaviour but the previous or subsequent frames do not, the frame
was removed as a positive prediction. Similarly, data were inter-
polated for single frames predicted to be not grazing that did
exhibit grazing behaviour in previous and subsequent frames. Each
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Figure 1. Measuring movement using optical flow. Raw videos are split into 25 frames/s and the luderick annotated. Annotated frames are run through the optical flow algorithm,
which estimates motion between adjoining frames. Pixel colour in output images denotes pixel movement between frames; black pixels indicate no movement.

of the models was run both with and without STF to determine
whether this additional step increased model accuracy.

Test Set and Performance Metrics

A data set of 18 videos comprising unseen footage from Tweed
Estuary of both grazing and nongrazing behaviours was annotated
as the ground-truthed test data. Performance was evaluated per
frame and per video. Per frame, performance was calculated by the
F1 score; the harmonic mean of recall and precision (Everingham,
Van Gool, Williams, Winn, & Zisserman, 2010). Precision is how
rigorous the model is at identifying the presence of luderick grazing
behaviour, and recall is the fraction of the total positives the model
correctly classified (Everingham et al.,, 2010). The F1 score de-
termines how well the model can identify the behaviour by
combining recall and precision with equal weighting. The perfor-
mance metrics were calculated as follows:

True positive

Precision (P) = — —
ecision (P) True positive + False positive

True positive

Recall (R) = True positive + False negative
F1 score=2 x %

Per video, performance was measured as the number of grazing
events detected against the manually ground-truthed number of
events.

Statistical Analysis

A mixed-effects linear model was run to determine whether the
use of STF influenced model performance (recall, precision and F1
score). The fixed effect was STF and the random effect was the in-
dividual model.

All data labelling, training and testing were conducted on FishID,
a cloud-based software developed at Griffith University (https://
globalwetlandsproject.org/tools/fishid/). The code used for the
deep learning, optical flow and spatiotemporal filtering is provided
in the Supplementary material.

RESULTS

The method proved effective at detecting grazing behaviour. On
a per frame basis, the vast majority of frames were correctly pre-
dicted as grazing and nongrazing, with high numbers of true pos-
itives, relatively few false negatives, and fewer again false positives
(Fig. 2a). Without spatiotemporal filtering (STF), recall, precision

and F1 were all between 73 and 79% (Fig. 2b). STF improved per-
formance substantially, increasing the proportion of true positives.
The addition of STF significantly increased recall (Fip =52,
P<0.001), precision (F1» = 24, P=0.039) and F1 (F1, = 72, P= 0.01)
to between 84 and 87% (Fig. 2b). The method mostly reported false
negatives as fleeting mistakes (e.g. missing the grazing behaviour
when the fish was obscured momentarily by sea grass while
feeding). False positives sometimes occurred over longer periods,
with the model mistaking another behaviour (swimming) for
grazing (see Appendix Table A1). Per video, the performance of the
method on a per video basis was very good. In all, 34 of the 37
grazing events (92%) were correctly detected when STF was applied
(Table 1). The number of events per video was generally the same as
the manually ground-truthed number, or nearly so, for all 18 test
videos (number of events ranging from 1 to 7). The number of
grazing events was substantially less without the application of the
STF, only 27 of 37 events. Example videos of a trained model
detecting grazing behaviour can be found in the Supplementary
material.

DISCUSSION

We have provided early evidence that successful behavioural
classification of grazing movements using the combination of op-
tical flow and deep learning techniques from unconstrained un-
derwater environments may be a viable technique. We have shown
that these combined techniques can identify grazing behaviour of
segmented luderick in underwater videos taken in situ in marine
environments. We have also shown that spatiotemporal filtering
(STF) is a useful postprocessing step for obtaining higher accuracy.
By learning optical flow patterns representing specific body
movements, our models correctly recorded 92% of grazing events in
the test videos.

While the deep learning method proposed in this paper can
identify behaviour with relatively high accuracy, detecting errors
within the system is still difficult to control. Although deep learning
algorithms have been shown to have a lower error rate than human
counterparts when tested on data sets similar to ones they have
been trained on (Ditriaa et al. 2020a), some form of error or bias is
present in all methods of data analysis; for deep learning, this is
especially the case when presented with novel data different to
what the algorithm has been trained on. Methods for controlling
error rates for deep learning classification algorithms are beginning
to emerge. For example, Villon et al. (2020) proposed a framework
that classifies multiple fish species with not only a species name,
but also an additional postprocessing label of ‘sure’ or ‘unsure’
based on a set confidence threshold after the species is determined
by the deep learning algorithms. While this may still require
manual effort to determine the species in the ‘unsure’ category, the
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Figure 2. Performance of automated behaviour models on a per frame basis, with and without spatiotemporal filtering (STF). (a) The number of frames classified correctly (True
positives) and falsely (False negatives, False positives). (b) Recall, precision and F1 scores. N =3 models in all cases. Vertical lines represent SEs.

Table 1
Model performance measured as detection of grazing events

Video Manual Computer detection Computer detection
ground-truth with STF without STF
(no. of events) (no. of events) (no. of events)

1 1 1.0 1.0

2 7 7.0 5.0

3 1 03 0.0

4 4 33 2.7

5 1 1.0 1.0

6 4 4.0 3.0

7 1 1.0 0.3

8 1 1.0 0.3

9 2 2.0 0.7

10 4 2.6 23

11 1 1.0 1.0

12 2 2.0 2.0

13 1 1.0 1.0

14 2 2.0 2.0

15 1 1.0 1.0

16 1 1.0 1.0

17 1 1.0 1.0

18 2 2.0 1.0

Overall 37 342 273

Results are presented for individual test videos, and overall, with and without
spatiotemporal filtering. No. of events for manual ground-truthing are exact values.
No. of events for computer detections are an average of three models.

overall workload is significantly lessened, and the misclassification
error rate was reduced from 22% to 3%. This type of statistical
approach to deep learning outputs might also be effective in
behavioural research.

The automation method we describe can be a complementary
tool to research that already relies on camera technology to capture
behaviours that are usually analysed manually. Although our
models were successful at identifying grazing versus nongrazing
behaviours, there are some important caveats and biases with
utilizing deep learning and optical flow to automate this process.
Individuals of our target species were of an easily observable size
(range approximately 30—40 cm long); they are common in coastal
habitats, and display an obvious body movement when grazing,
making them a good model species to test this method. The method
might be less suitable for smaller or cryptic species, or those that
display subtle behaviours. However, given that we suggest these
techniques can replace current manual analysis of behaviours from

video footage, it is likely that only perceptible behaviours are
documented to begin with. Researchers will need to address
whether to implement automation of video analysis on a case-by-
case basis to decide whether it is appropriate for the specific
behaviour and species of interest.

Deep learning provides a cost-effective way to analyse large
volumes of video data. In Ditria et al. (2020a) we showed that once
trained, a deep learning algorithm could identify and count fish in
isolated images and segments of video not only faster than humans,
but also more accurately and more consistently. However, the
application of automated methods often requires higher start-up
costs and effort, followed by lower costs after initial implementa-
tion. For example, Gonzalez-Rivero et al. (2020) showed that
automatic processing of coral reef images using deep learning
resulted in a 99% cost reduction and was 200 times faster than
manual methods. However, this may not be a suitable method for
all studies. If the research project consists only of a small amount of
data to be processed as a singular study, manual processing may
prove to be most cost effective. Here, we have provided the time it
took to label the data set and train the model as a guide; times will
be project specific and will vary depending on computation
resource and manual skills in identifying behaviours. The length of
the study and the amount of data to be processed should be taken
into consideration when deciding whether deep learning methods
are a suitable approach for behavioural studies.

Not only can deep learning techniques recognize animals at the
species level, they can also identify individuals from a population
(Konovalov et al., 2018; Hou et al., 2020), suggesting that this
technique can be implemented to quantify individual differences in
feeding behaviours. This technique could be applied to ascertain
the frequency of certain behaviours influenced by a number of bi-
otic and abiotic factors such as foraging behaviours in turbid con-
ditions (Chamberlain & loannou, 2019), foraging frequency in the
presence of boat noise (Pieniazek, Mickle, & Higgs, 2020) and
habitat foraging occurrence and frequency with predation risk
(Reinthal & Lewis, 1986). Currently, noninvasive methods to
determine the rate of sea grass versus algal consumption by grazing
fish such as luderick are rarely used. Instead, invasive methods
including the capture and killing of herbivorous fish are often
necessary to analyse stomach contents or perform isotope analysis
to determine grazing rate and preferences (Raubenheimer, Zemke-
White, Phillips, & Clements, 2005; Waltham & Connolly, 2006;
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Figure 3. Two adjoining frames from a video of grazing behaviour displaying (a) an incorrect (false negative) and (b) a correct (true positive) assignment.

Dromard, Bouchon-Navaro, Harmelin-Vivien, & Bouchon, 2015).
The potential application of our analytical tool could supplement or
eventually, with further advances in computer vision, replace the
need for invasive and lethal methods when coupled with other
known variables such as the volume of algae removed per blade,
fish size or total time grazing. There is a considerable upside for
further research determining what other behaviours can be iden-
tified using this and other deep learning methods.

While it is possible to quantify behaviours using automation
techniques, behaviours may not be effectively captured by in situ
computer vision techniques due to camera limitations in environ-
mental conditions such as increased water turbidity or decreased
light availability (Gray et al., 2011, 2014; Van der Sluijs et al., 2011).
However, technological advances could lead to deep learning
techniques being effective on a range of other image-based data
including sonar, which is not dependent on these environmental
conditions (Enders, Danco, Podemski, & WIlasichuk, 2016). Using
sonar in conjunction with deep learning techniques is possible for
researchers to investigate and warrants further research into
automated methods for other image-based data (Enders et al.,
2016). Similar to the issue of capturing small or cryptic animals
on camera, it is probable that researchers do not currently attempt
to collect footage in environments that have poor visibility, and
therefore cannot be manually analysed. Additionally, animals may
frequent a number of different habitats or locations and behaviours
may change depending on the environment. Ditria, Lopez-Marcano,
Sievers, Jinks, and Connolly (2020b) showed that due to domain
shift, where the training data are not an accurate enough repre-
sentation of the real-world data they encounter, some models may
not be transferable across habitat types. This may be a particular
issue if behaviours differ markedly between habitats; for example,
our target species exhibits epiphytic algal grazing in sea grass beds,
but it exhibits a plucking motion when grazing on macroalgae in
rock habitats. Further studies into how models perform when
trained on multiple behaviours is needed.

Deep learning offers scientists a tool that is faster than manual
analysis; however, there is still some subjectivity resulting from the
initial categorization of behaviours (Han et al., 2018). What con-
stitutes a specific behaviour is subject to interpretation by the
person annotating the training data, as is the case in manual
analysis of video footage. In our study, observing the visual overlay
of computer-predicted behaviours on videos (see example in Fig. 3),
we discerned that many of the grazing frames that are missed are
those that are at the start of the grazing behaviours. This could be
explained by the subjectivity of the manual annotator determining
when the grazing behaviour begins. A difference in optical flow
pixel movement, which the computer relies on to classify grazing
behaviour, may not occur until one or several frames later.

Although research into combining optical flow and deep
learning techniques has classified behaviours in the laboratory (e.g.

Nguyen et al., 2019), the ability to automate the analysis of video
data collected in the field presents a unique set of challenges that
are rarely encountered in controlled systems. These may include
varying distances of the subject from the camera, and environ-
mental factors such as different weather conditions or varying
water clarity, which can all affect model performance, especially if
these conditions have not been encountered in training. Despite
these environmental challenges, attempts to use deep learning for
behavioural studies are beginning to be applied, especially in
terrestrial environments. For example, Graving et al. (2019) classi-
fied a range of large, terrestrial animals displaying different poses
and postures from still images using deep learning methods. We
expect studies expanding the utility and versatility of deep learning
algorithms to lead to a better understanding of how to analyse and
automate the identification of animal behaviour.

We have shown that coupling deep learning with optical flow is
a promising method to automate the analysis of grazing behaviours
of a target species from underwater videos in unconstrained en-
vironments. The method seems ideally suited for questions about
the frequency of specific behaviours, where the technique can be
used to complement traditional techniques, reducing the time
needed for manual analysis. Deep learning techniques can auto-
mate the analysis of underwater video data and obtain information
on the distribution, abundance and behaviours of animals, signal-
ling that this technology is likely to be important for the future of
raw data analysis of images and videos to improve research
efficiency.
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Appendix

Table A1
The average performance of the three models per video with spatiotemporal
filtering

Video TP FP FN R% P% F1%

1 18.0 14.3 0.0 100.0 55.7 715
2 58.7 293 103 85.0 66.7 74.7
3 0.3 0.0 7.7 4.2 333 74

4 38.7 0.0 17.3 69.0 100.0 815
5 103 0.0 0.7 93.9 100.0 96.8
6 49.0 0.0 1.0 98.0 100.0 99.0
7 3.7 0.0 6.3 36.7 100.0 524
8 103 0.0 7.7 57.4 100.0 72.8
9 19.0 0.0 1.0 95.0 100.0 97.4
10 14.7 0.0 103 58.7 100.0 73.0
11 83 0.0 0.7 92.6 100.0 95.8
12 25.0 0.0 3.0 89.3 100.0 94.3
13 14.0 0.0 0.0 100.0 100.0 100.0
14 19.0 0.0 1.0 95.0 100.0 97.4
15 10.7 0.0 03 97.0 100.0 98.4
16 10.0 0.0 0.0 100.0 100.0 100.0
17 16.7 0.0 0.3 98.0 100.0 99.0
18 29.0 0.0 0.0 100.0 100.0 100.0
Overall 3553 43.7 67.7 84.0 89.1 86.5

These metrics reflect the performance of the model at identifying the grazing
behaviour of each annotated luderick frame from the video, not whether the indi-
vidual behaviour event was detected or not. Overall recall (R), precision (P) and F1
scores are calculated based on overall true positives (TP), false positives (FP) and
false negatives (FN) as opposed to representing a mean score across the 18 videos.
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