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1  | INTRODUC TION

Globally, 85% of oyster reefs have been lost, mainly due to over-
harvesting, disease and poor water quality (Beck et al., 2011). Lost 
oyster reefs are often replaced with ecosystems that provide lower 
habitat values for fish (i.e., less food or poorer protection from 

predators), such as bare sediments (Grabowski et al., 2012). These 
changes can be associated with reductions in fish diversity, biomass 
and abundance and with declines in the landings of recreational and 
commercial fishes (Coen, Giotta, Luckenbach, & Breitburg, 1999; 
Peterson, Grabowski, & Powers, 2003). As a consequence, the resto-
ration of oyster reefs as fish habitats, and therefore to enhance fish 
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Abstract
Global declines in oyster reefs have resulted in reduced habitat heterogeneity, extent 
and quality for some coastal finfish, potentially reducing fish populations and catches. 
It is well established that habitat restoration results in higher finfish biomass and di-
versity where oyster reefs replace bare substrata. Therefore, restoring oyster reefs 
with a view to also improving fish stocks is often a key goal of oyster restoration. 
However, the principles of habitat quality, ecological connectivity and broader eco-
system management are poorly integrated within oyster reef restoration ecology, but 
such principles may be instructive in enhancing the benefits of projects on fish popu-
lations throughout estuarine seascapes. This manuscript presents a framework for 
projects seeking to restore both oyster reef habitat and finfish communities. 
Structurally and biologically complex oyster reefs, comprising both oysters and other 
invertebrates, are required to provide shelter, food and nursery services to fish. By 
carefully considering site selection at seascape scales (km to 10s of km), restoration 
can enhance the network of habitat available to fish and potentially increase the 
overall carrying capacity of the estuary. Managers of estuaries that now include re-
stored oyster reefs should implement fisheries management plans and consider the 
effects of management actions broadly throughout catchments; failing to do so may 
jeopardize gains in fish yields. Management decisions must be adaptable, responding 
to key criteria in thorough monitoring programs. Integrating these ecological and 
coastal management concepts into oyster reef restoration will enhance outcomes for 
fishes and increase stakeholder engagement and cost-effectiveness.
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and/or fisheries, is often, but not always, a key aim of oyster restora-
tion projects (Coen & Luckenbach, 2000; zu Ermgassen, Grabowski, 
Gair, & Powers, 2016).

Ecological restoration of oyster reefs for finfish and their fish-
eries is an important component of many coastal management 
and enhancement schemes (Baggett et al., 2015; Creighton, Boon, 
Brookes, & Sheaves, 2015; Humphries & La Peyre, 2015). Oyster 
reef restoration encompasses both categories of ecoengineering: 
Type A, the restoration of habitats thus allowing the desired spe-
cies to colonize or expand; and Type B, which involves the direct in-
crease in a species, such as through restocking or replanting (Elliott 
et al., 2016). Globally, 46 studies detail oyster restoration projects 
which seek to enhance finfish and/or their fisheries around reefs 
(as identified from the ISI Web of Knowledge; Figure 1, Table S1). 
Restoring oyster reefs can augment fish biomass by up to 260 g/m2

of restored reef per year (Peterson et al., 2003). These effects of 
restoration on fish populations result from enhanced larval set-
tlement and survival (Breitburg, Palmer, & Loher, 1995) and the 
immigration of adult fish to reefs, where they feed and take shelter 
(Gittman et al., 2016; Harwell, Posey, & Alphin, 2011). By enhanc-
ing fish biomass, restored oyster reefs can convey economic ben-
efits of up to US$4123 ha−1 year−1 for local commercial fisheries 
(Grabowski et al., 2012). While restored oyster reefs are relatively 
common in North America (87% of studies have been conducted 
on the Atlantic or Gulf coasts of the USA; Figure 1), oyster reef 
restoration projects focusing on fish enhancement are only just 
gaining interest and momentum in Australia (Gillies et al., 2015), 
Europe (Farinas-Franco & Roberts, 2014) and Asia (Quan, Zhu, 
Ni, Shi, & Chen, 2009). While enhancement of fish populations is 
just one of the multiple ecosystem services provided by restored 
oyster reefs and is not always the key driver of restoration (e.g., 
intertidal oyster reef restoration may be to stabilize shorelines 
and protect them against erosion; Grabowski et al., 2012), win\
win scenarios (for the ecology and the economy) may be created 
if, irrespective of the key goal, reefs are also designed to enhance 
fish. By expanding the goals of oyster reef restoration to include 
fish and fisheries, we might, therefore, also enhance the economic, 
social and cultural values associated with restoration efforts and 
maximize stakeholder engagement, both locally and globally (La 
Peyre, Nix, Laborde, & Piazza, 2012).

While it is well established that restoring oyster reefs can aug-
ment fish biomass and enhance finfish fisheries, the published 
literature on oyster reef restoration poorly integrates several im-
portant ecological concepts that shape fish populations in coastal 
waters. For example, it is widely accepted that the extent of key 
coastal nursery habitats, such as seagrass, marshes and mangroves 
(Nagelkerken, Sheaves, Baker, & Connolly, 2015), and the degree 
to which these habitats are connected (Olds et al., 2016; Pittman, 
Kneib, & Simenstad, 2011) are significant determinants of fish as-
semblages in coastal seascapes. Therefore, future oyster reef res-
toration projects can build on the first generation of oyster reef 
projects, which have demonstrated that reefs augment the produc-
tivity of a number of finfish species, by adopting a landscape-scale 

approach that accounts for how reefs interact with other structured 
habitats (Bostrom, Pittman, Simenstad, & Kneib, 2011). Advances in 
our understanding of how managing catchment water supply, sed-
iment and nutrient run-off affects coastal ecosystems (Gorman, 
Russell, & Connell, 2009; Klein et al., 2012) and more effective fish-
eries restrictions (Gilby, Olds, Yabsley et al., 2017) can also improve 
the ecological condition of coastal habitats and modify the compo-
sition of fish assemblages. An increasing literature on ecohydrology 
with ecoengineering principles is providing case studies of success 
and failure (Elliott et al., 2016). However, the extent to which these 
interventions affect the outcomes of oyster reef restoration projects 
for fish is unclear. The capacity of oyster restoration projects to pro-
mote fish biomass and enhance fisheries can, therefore, be improved 
by better incorporating modern concepts in fish ecology and fisher-
ies management into the design of reef projects.

In this study, we analyse the relevant literature to better inte-
grate the fields of fish habitat research, seascape ecology and coastal 
management into oyster reef restoration projects. First, we outline 
three important prerequisites that must be established for oyster 
reef restoration projects that seek to enhance fish populations and 
fisheries (Figure 2). We then introduce four key concepts (Figure 3) 
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that will improve restoration outcomes for fish and fisheries: (a) view 
oyster reefs as fish habitats; (b) recognize that oyster reefs are part 
of a wider seascape that includes other fish habitats; (c) consider the 
impact of other management interventions (e.g., fishing restrictions 
and catchment run-off reductions); and (d) monitor the effects of 
restoration for both oysters and fish across the entire seascape and 
implement changes to restoration plans where necessary. The over-
arching intent is to fine-tune the design, placement and manage-
ment of restored oyster reefs to minimize their economic costs and 
maximize their ecological benefits for both oyster reefs and finfish 
fisheries.

2  | PREREQUISITES FOR RESTORING 
OYSTER REEFS FOR FINFISH AND THEIR 
FISHERIES

Adding oyster reefs to systems where they did not occur histori-
cally (i.e., at an ecosystem or embayment-wide scale) can be viewed 
as the artificial modification of coastal seascapes. The absence of 
oyster reefs from areas where they are to be restored might be be-
cause the area has either unsuitable substratum or water quality 
(including turbidity and salinity) or there not being any spat supply. 
In the case of a degraded system, for example, where historical 
populations are now absent, failing to remedy the human activi-
ties that led to the degradation, or loss, of oyster reefs or pre-
vent their recovery (e.g., overharvesting and poor water quality) 
will severely limit the success of any restoration project. In some 

instances, oyster reefs may have been replaced by other structur-
ally complex ecosystems (e.g., seagrass, kelps or mangroves) that 
also provide important habitat for fish; restoring oyster reefs in 
these locations might not result in overall net improvements in fish 
or fisheries (Grabowski, Hughes, Kimbro, & Dolan, 2005). Thus, 
there are three important considerations (Figure 2) for oyster reef 
restoration projects that seek to enhance fish and fisheries:

1.	 Evidence for the historical occurrence of oyster reefs in the 
target region;

2.	 Causes of oyster reef decline must be reversed, and modern-day 
conditions are suitable for oyster growth; and

3.	 New nonreef habitats support fewer fish than oyster reefs.

3  | KE Y CONCEPTS TO IMPROVE 
RESTOR ATION OUTCOMES FOR FISH AND 
FISHERIES

3.1 | View oyster reefs as fish habitats

The environmental conditions under which oyster reef restoration 
is most successful are well documented (e.g., Baggett et al., 2015). 
Many of the conditions that affect the outcomes of oyster produc-
tion also influence fish abundance and diversity, thereby function-
ally linking oyster reef habitats with fish via water quality and other 
attributes of the environment. We will, therefore, examine how the 
factors that control establishment of restored oyster reefs might 
also affect the fish assemblages that colonize these reefs.

F IGURE  1 Global distributions of (a) 
studies assessing the effects of oyster 
reef restoration for fish (as identified 
from ISI Web of Knowledge search for 
[oyster* and fish and restor*]) and (b) the 
global distribution of key habitats with 
which oyster reefs have a functional 
linkage. Information on the extent and 
geographic distribution of ecosystem 
types sourced from the United Nations 
Environment Programme World 
Conservation Monitoring Centre (UNEP-
WCMC) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.1.1 | Environmental variables

Both oysters and individual fish species each have optimal, and 
often different, physicochemical envelopes in which they prefer to 
live (e.g., Solan & Whiteley, 2016). For example, oyster restoration 
sites must be located within the physiological tolerances of the main 
reef-building oyster and/or mussel species, with respect to tempera-
ture, salinity, dissolved oxygen and turbidity (Baggett et al., 2015). 
Catchment run-off, tides, waves and currents modify these environ-
mental variables over a variety of temporal scales (Rodriguez et al., 
2014), thereby emphasizing the need for a good understanding of 
ecohydrology principles (Wolanski & Elliott, 2015). Therefore, con-
sideration of the range and threshold (tolerances) values of these 
abiotic factors is more important than their mean values in determin-
ing the placement of oyster reefs. In addition, for a self-sustaining 
bed, the site has to be within a suitable hydrographic regime to get 
the spat delivered to the area, that is, hydrographic concentration. 
Selecting sites that match the optimal environmental tolerance en-
velopes for both oysters and fish should therefore be considered a 
key goal when seeking to restore fish assemblages around restored 
oyster reefs.

Most estuarine fish species have evolved to cope with 
variation in the physicochemical properties of coastal waters 
(Elliott & Quintino, 2007), but are nevertheless also suscepti-
ble to extreme water temperatures (Marshall & Elliott, 1998), 
salinity levels (Bachman & Rand, 2008; Marshall & Elliott, 1998) 

and low dissolved oxygen concentrations (Stevens, Blewett, 
& Casey, 2006) that are beyond their physiological limits. To 
minimize effects of variable and especially poor water quality 
on both oysters and fish, oyster reef restoration projects can 
target locations that provide highly oxygenated waters with 
good water flow (Lenihan, Micheli, Shelton, & Peterson, 1999; 
Lenihan et al., 2001). The appropriate water quality has to be 
at the reef site, as well as the site of the source oyster or fish 
populations.

High sedimentation, especially from fine silts and clays, detri-
mentally affects oyster spat settlement and lowers the body con-
dition, reproductive output and growth of oysters (Kimbro, Byers, 
Grabowski, Hughes, & Piehler, 2014; Lenihan, 1999; Tamburri, 
Luckenbach, Breitburg, & Bonniwel, 2008). High turbidity levels 
can also be harmful to some estuarine fish species (Benfield & 
Minello, 1996), particularly visually orienting predators (Lunt & 
Smee, 2015). While oyster reefs can help to reduce turbidity at 
local scales, this effect may take several years to develop and 
relies on the persistence of adult oysters (La Peyre, Humphries, 
Casas, & La Peyre, 2014; Newell & Koch, 2004). Positioning oys-
ter reefs at sites within estuaries that regularly experience very 
high turbidity may, therefore, limit both the growth of oyster 
reefs and the rate at which they are colonized by fish. Many estu-
aries, especially macrotidal ones, have strong erosion–deposition 
cycles which need incorporating into the assessment of risk to 
the beds.

F IGURE  2 There are three important 
prerequisites for oyster reef restoration 
projects that seek to enhance finfish 
and their fisheries: (a) evidence for the 
historical occurrence of oyster reefs 
in the target region; (b) whether the 
detrimental effects of human activities 
that caused the loss of oyster reefs have 
been controlled, and modern conditions 
are suitable for reef restoration; and (c) if 
lost reefs were replaced by habitats (e.g., 
bare sediments) that support significantly 
fewer fish than oyster reefs. Images 
courtesy US Fish and Wildlife Service, 
Kaensu (Flickr) (CC BY 2.0) and D. Schwen 
(CC BY 3.0) [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.1.2 | Reef properties

A prime function of restored oyster reefs is often to create or  
enhance fish habitat. The biological and structural properties of  
restored oyster reefs are often important factors in determining the 
quality of reef habitat to fish, including providing food and shelter 
from predation (i.e., reef size, vertical relief, water cover and struc-
tural complexity). The reef could produce the appropriate habitat 
even if the oysters were no longer alive.

Oyster reefs are actively restored either by replacing hard sub-
strata that have been lost, thereby allowing new oyster spat to settle 
and grow (e.g., Type A ecoengineering) and/or by reintroducing liv-
ing oysters (Baggett et al., 2015; La Peyre, Furlong, Brown, Piazza, & 
Brown, 2014), (e.g., Type B ecoengineering; Elliott et al., 2016). Both 
methods require successful larval settlement, which can result from 
mature oysters on restored reefs or as oyster spat brought from 
other locations (Lipcius et al., 2008). Reef-associated fishes often 
feed directly on oyster spat, adult oysters and other invertebrates 
(e.g., polychaetes, amphipods, sponges and mussels) that grow on 
oyster reefs or use reefs as habitats (Johnson & Smee, 2014; Lehnert 
& Allen, 2002). Therefore, productive reefs composed of healthy 
oysters, and other invertebrates, are likely to be more beneficial for 
fish (Peterson et al., 2003).

Subtidal reefs that extend high above the seabed and out of 
potential low oxygen concentration boundary layers, result in im-
proved oyster settlement, growth and survival on the reef crests 
(Lenihan et al., 1999). Taller reefs might also be more resilient to the 
potential impacts of sedimentation, sea-level rise, parasites and dis-
eases (Lenihan et al., 1999; Rodriguez et al., 2014). However, as with 
marine mussels, the increase in individual bivalve size can make the 
organisms protrude above the bed boundary layer and make them 
susceptible to begin pulled off the bed by the stronger currents. 
Oyster reefs with greater vertical relief provide more calm water in 

their lee (i.e., current shadow), which is favoured by some fish spe-
cies (Breitburg et al., 1995; Lenihan, 1999), and can be positively re-
lated to fish biomass (Gratwicke & Speight, 2005b).

Placing reefs in intertidal locations results in their drying at low 
tide, thus restricting the time for fish to use the area. Because fish 
need water, the habitat value of intertidal reefs for fish may be lower 
than that of subtidal reefs (e.g., Lehnert & Allen, 2002). While these 
intertidal reefs, like many other intertidal habitats (e.g., mangroves 
and intertidal flats), might provide rich feeding opportunities during 
high tide, the structure of the fish assemblage that utilizes them 
often depends on the composition of the surrounding seascape that 
fish use during low tide (Olds, Connolly, Pitt, & Maxwell, 2012a; 
Pittman, McAlpine, & Pittman, 2004). This indicates the importance 
of the knowledge of the biological and hydrographic connectivity 
between areas and hence feeding, breeding or refugia migrations. 
The dispersal rates of larvae (of oysters) and postlarvae (of fishes) 
combined with tidal discursion distances will dictate the delivery of 
spat and recruits to the restored areas. This concept is similar to the 
effects of tides on the habitat functions of mangroves; mangrove for-
ests that fall dry at low tide are often poorer fish habitats that those 
that are submerged permanently (e.g., Baker, Sheaves, & Johnston, 
2015). Where projects necessitate intertidal reefs (e.g., due to oyster 
species biology, disease considerations or to ensure safe navigation 
by boats), it may be important that they are positioned closer to sub-
tidal habitats nearby where fishes can seek refuge during low tides, 
such as on seagrass or other reefs (Olds, Connolly, Pitt, & Maxwell, 
2012b; Peterson et al., 2003).

In terms of reef and project extent, a restoration project seek-
ing to enhance seascape heterogeneity for fish can aim to restore 
the greatest extent of oyster reefs possible within financial and time 
limitations, up to any established historical extents of oysters in the 
target estuary. The size of a restoration site has two complemen-
tary facets: (a) the area of seabed covered by living and nonliving 

F IGURE  3 Key concepts to improve restoration outcomes for fish and fisheries. (a) Oyster reefs must be healthy and complex biogenic 
habitats that are positioned within the physicochemical niche of both oysters and fish. (b) Oyster reef restoration projects should be 
positioned to improve connectivity (between reefs and among reefs and other habitats), promote fish recruitment and enhance the nursery 
function of coastal seascapes for fish. (c) Other impacting processes (e.g., fishing, sedimentation and eutrophication) must be managed to 
limit their effects on the performance of restored oyster reefs. (d) Management decisions must be adaptable, responding to key criteria from 
thorough monitoring programs that are specifically designed to ascertain the health and development of the reefs and detect the effects of 
oyster reefs for fish both on reefs and in the surrounding seascape [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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oyster shells and (b) the total aerial dimensions of the project foot-
print, including any nonreef areas between oyster reefs (Baggett 
et al., 2015). Habitat complexity and extent will dictate the ability 
of the restored area to gain or regain it functioning; for example, 
Wootton (1992) emphasized that fish diversity increased with habi-
tat heterogeneity, then size and then productivity. Habitats that are 
structurally complex (e.g., reefs, mangroves and seagrass) typically 
harbour higher fish biomass and diversity than habitats that are sim-
pler (e.g., sand and mud flats; Grabowski et al., 2005; Gratwicke & 
Speight, 2005a; Sherman, Gillian, & Spieler, 2002). The architectural 
complexity of oyster reefs can be measured in the form of rugosity 
(roughness; scale: cm to tens of m) and in the form of new spatial 
heterogeneity that the reefs add to coastal seascapes (scale: m to 
km). At the scale of individual oyster reefs, the provision of holes and 
crevices of variable sizes that can be inhabited by a range of fishes 
and used as refuges, feeding grounds and spawning sites, which will 
help to promote fish diversity and biomass (Gratwicke & Speight, 
2005a). At the scale of oyster restoration projects, reefs that are 
designed to provide a diversity of habitat structures (i.e., with high 
rugosity and vertical relief) across the site are likely to contain 
more and a higher diversity of fish (Bozec, Alvarez-Filip, & Mumby, 
2015) because they provide more feeding opportunities and better 
sanctuaries from predators, especially for juvenile fish (Peterson 
et al., 2003). These concepts are widely accepted for artificial reefs 
(Sherman et al., 2002; Wilson & Elliott, 2009), but require further 
investigation for oyster reefs (Table 1).

3.2 | Recognize that oyster reefs are part of a wider 
seascape that includes other fish habitats

The successful restoration requires a good knowledge of ecological 
principles. Firstly that the physicochemical environment will set up 
the fundamental substratum or water column niches which then get 

occupied by organisms to give community structure (the so-called 
environment–biology relationships; Gray & Elliott, 2009). Following 
this, biology–biology relationships create the ecological functioning 
from the structure, and then the biota starts modifying the environ-
ment (biology–environment relationships) especially in the case of 
ecosystem engineers such as reef-forming species.

Seascape ecology transfers ecological principles and concepts 
from landscape ecology to marine systems (Pittman et al., 2011). At 
the core of seascape, ecology is the recognition that the ecologi-
cal functions of ecosystems are contingent on the type, condition 
and spatial arrangement of other ecosystem structures across entire 
seascapes (Bostrom et al., 2011; Gustafson, 1998). The movement 
of matter and organisms across seascapes functionally links eco-
systems, and this ecological connectivity shapes species distribu-
tions, food web structure and ecosystem function (Olds et al., 2016; 
Pittman et al., 2011). The recovery of fish assemblages on restored 
oyster reefs relies on colonization from elsewhere in the seascape; 
therefore, seascape positioning is a vital consideration when restor-
ing oyster reefs for fish.

3.2.1 | Connectivity with other habitats

In coastal seascapes, many fish move daily, or tidally, between 
marshes, mangroves, seagrasses and natural reefs at scales of me-
tres to hundreds of metres (Bostrom et al., 2011; Grober-Dunsmore, 
Pittman, Caldow, Kendall, & Frazer, 2009; Olds et al., 2018; Potter, 
Tweedley, Elliott, & Whitfield, 2015). Ecosystems that are better 
connected (i.e., closer together or linked by currents), therefore, 
usually harbour more fish than those that are isolated (Nagelkerken 
et al., 2015; Olds et al., 2018; Figure 4). The level of connectivity be-
tween oyster reefs and other ecosystems is, therefore, an important 
consideration in the design of oyster restoration projects; particu-
larly for intertidal reefs that dry on ebb tides and force fish to move 

TABLE  1 List of research questions for fish and fisheries associated with restored oyster reefs

Research field Priority research questions

A. Oyster reefs as fish habitats 1. Food for fish: Under what scenarios are oysters, and the larvae of other sessile invertebrate (e.g., ascidian, 
polychaete, sponge), most likely to settle, grow, and provide high-quality food for fish? (e.g., Grabowski 
et al., 2005)

2. Protection from predators: What attributes of oyster reefs (i.e., area, height, architecture) provide fish with 
the best protection from predators? (e.g., Sherman et al., 2002)

B. Oyster reefs as part of wider 
seascapes

3. Connectivity: How does the seascape context of oyster reefs affect ecological processes (predation, 
nutrient turn- over), fish larval settlement, and habitat value for adult and juvenile fishes (e.g., Bostrom 
et al., 2011; Grabowski et al., 2005), are these patterns consistent across different types of seascapes, and 
which oyster reef designs maximise these metrics?

4. Fish movement: To which alternate habitats should oyster reefs be connected to maximise reef value to 
fishes, and over what scales do these connectivity effects occur? (e.g., Nagelkerken et al., 2015)

C. Fisheries and catchment 
management

5. People and oyster reefs: What are the effects of fishers and fishing on the restoration of fish biomass?  
(e.g., Powers, Peterson, Grabowski, & Lenihan, 2009) 
What are the social and cultural values of restored oyster reefs, and how can these be maximised?  
(e.g., Kingsley-Smith et al., 2015; Venturelli, Hyder, & Skov, 2017)

D. Monitoring and adaptability 6. Indicator species and processes: What are the best ecological indicators of restoration success for finfish, 
and which suite of indicators are most appropriate for monitoring effects on ecosystem condition and 
function? (e.g., Valesini et al., 2017)
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into subtidal habitats (Grabowski et al., 2005; Peterson et al., 2003). 
Despite this, connectivity is particularly difficult to quantify. The UK 
Marine Conservation Zone concept aimed for a coherent and con-
nected set of sites and defined sites to be connected as dictated by 
larval time in the water column (Roberts et al., 2010). However, such 
a connectivity rule of thumb then depends on the tidal excursion, 
tidal oscillations and the presence of oceanic fronts which can be a 
barrier to movement (Green et al., 2014; Olds et al., 2018).

As restoration projects are increasingly being conducted in 
highly modified seascapes, the degree to which built infrastruc-
ture may serve as a barrier to fish movements (Bishop et al., 2017), 
thereby reducing the benefits of restoration projects for finfish, may 
also be a significant consideration. Connections with marshes, sea-
grasses and mangroves are likely to be the most important for oyster 
reefs (Figure 1), depending on the seascape in which they are im-
bedded (Bostrom et al., 2011; Gain et al., 2017) and on the local fish 
community requirements for feeding, spawning and refugia migra-
tions. Globally, studies on habitat connectivity with oyster reefs are 
entirely restricted to marsh-dominated seascapes (Figure 1), with 
no studies conducted in subtropical seascapes, especially around 
mangroves, despite the current or historical presence of oyster reefs 
in many of these areas. While seagrasses occur in both marsh and 
mangrove-dominated seascapes, few studies have explicitly as-
sessed the effects of seagrass connectivity for fish on oyster reefs 
(Table S1). Determining the importance of these connections with 
alternate habitats, and the distances over they function in different 
seascape compositions (e.g., mangrove- vs. marsh-dominated sea-
scapes), should therefore be a priority for research (research priori-
ties 3 and 4, Table 1).

While it can be generalized broadly across coastal ecosystems, 
that higher connectivity with alternate habitats is positive for fish 
assemblages (Olds et al., 2018), there are some contrasting results 
within the oyster reef literature. For example, studies on oyster reefs 
in North Carolina, USA, concluded that restored reefs directly ad-
jacent (<10 m) to existing vegetated habitats did not augment fish 
abundance to the same degree as more isolated reefs (e.g., on mud 
flats; Geraldi, Powers, Heck, & Cebrian, 2009; Grabowski et al., 
2005). On the contrary, a recent study in Texas, USA, indicated that 
reefs near to seagrass had higher abundance of macrofauna than 
more poorly connected reefs (Gain et al., 2017). The consistency of 
these effects within mangrove- or seagrass-dominated seascapes 
therefore remains unclear. Thus, further studies which seek to 
determine the optimal distance for the isolation are an important 
requirement for optimizing future restoration projects (research pri-
orities 3 and 4, Table 1).

The scale of patch connectivity effects between habitats 
is usually between 100 and 1,000 m in most coastal seascapes 
(Bostrom et al., 2011) and is dictated by the following: (a) fish 
mobility; (b) the type of migration being undertaken (e.g., feeding 
and reproductive); (c) the composition of seascapes; and (d) hy-
drology (Edwards, Elliott, Pressey, & Mumby, 2009; Nagelkerken, 
2009; Olds et al., 2012b). For example, fish move smaller dis-
tances among habitats to feed than they do during ontogenetic 

migrations. Feeding migrations into seagrass meadows are often 
shorter than similar forays into habitats with more vertical relief 
(e.g., mangroves and reefs), and tidal migrations among habitats 
are shorter in microtidal systems than in areas that experience 
larger tidal ranges whose tidal excursion can be used as a trans-
port mechanism (Grober-Dunsmore et al., 2009; Olds et al., 2018). 
System-specific information on the location and condition of other 
fish habitats, and the scale over which fish movements link eco-
systems in focal seascapes is therefore vital (Gilby et al., 2018; 
Nagelkerken et al., 2015; Table 1).

3.2.2 | Connectivity with other oyster reefs

Habitats that are close to other patches of the same type of habi-
tat often support higher fish diversity, abundance and biomass than 
isolated patches (Gustafson & Gardner, 1996; Soons, Messelink, 
Jongejans, & Heil, 2005). Effects of this type of habitat connectivity 
have been reported widely in seagrass, marsh and coral reef ecosys-
tems, but are rarely tested for oyster reefs (Bostrom et al., 2011). 
Where they have been tested, connectivity has shown highly vari-
able effects (Grabowski et al., 2005; Gregalis, Johnson, & Powers, 
2009). While the “optimal” distance that maximizes fish movement 
between oyster reefs is unknown (Table 1), distances are likely to 
be system-specific and scale on the dispersal capacity of species 
within individual systems. From published literature on both oysters 
and fish, we can surmise that restored oyster reefs should be suffi-
ciently to existing reefs to ensure that they receive a good supply of 
both oyster larvae and fish (Gregalis, Powers, & Heck, 2008; Steppe, 
Fredriksson, Wallendorf, Nikolov, & Mayer, 2016), but also suffi-
ciently far apart to provide additional reef nodes in the network of 
oyster reefs that are linked by fish movement (Gustafson & Gardner, 
1996; Soons et al., 2005; Figure 4).

The spatial separation of restored oyster reefs should be in-
formed by the migration patterns of fish species that are targets for 
restoration. Fish should be able to move easily among oyster reefs to 
access multiple restored reefs in the focal seascape. Previous studies 
have suggested that multiple smaller reefs might provide similar hab-
itat values for fish as single larger reefs (Harwell et al., 2011). Thus, 
several smaller restored reefs that are well connected to each other 
(within the 100 to 1,000 m range) across a seascape, therefore, are 
more likely to effective at enhancing fish populations across entire 
estuaries (Table 1; Figure 4). The hydrology of estuaries and coastal 
waters also shapes the composition of fish assemblages by regulat-
ing the likelihood of juvenile settlement (Hannan & Williams, 1998) 
and the probability of visitation by adults (Connolly & Hindell, 2006; 
Henderson et al., 2017). Fish employ tidal excursion currents to tra-
verse large distances between inshore habitats (e.g., feeding areas 
and juvenile nursery habitats) and offshore habitats (e.g., spawning 
areas and adult habitats) and use other structurally complex ecosys-
tems as stepping stones (i.e., feeding and resting areas) during these 
migrations (Engelhard et al., 2017; Nagelkerken et al., 2015; Figure 4). 
By selectively restoring oyster reefs in locations to add both spa-
tial and structural heterogeneity to coastal seascapes, restoration 
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projects might also provide additional habitats for fish to use as step-
ping stones during these ontogenetic migrations (Mullaney, 1991; zu 
Ermgassen et al., 2016; Figure 4). Hence, this also ensures connec-
tivity which is the central mechanism for creating coherence among 
restored and protected environments (D’Agostini, Gherardi, & Pezzi, 
2015; Planes, Jones, & Thorrold, 2009).

3.2.3 | Enhancing fish recruitment and 
nursery value

Oyster reefs are important sites for fish spawning (Tolley & Volety, 
2005), attract fish larvae (Breitburg et al., 1995) and function as 
nursery areas for many fish species (Coen, Luckenbach, & Breitburg, 
1998; Peterson et al., 2003; zu Ermgassen et al., 2016; Figure 4). The 
extent to which oyster reefs function as nursery habitats for juvenile 
fishes is determined by three interrelated factors: (a) the likelihood 
that fish larvae settle on reefs; (b) the abundance, growth and sur-
vival, of juveniles; and (c) the level of success that juvenile fish have 
in migrating from oyster reefs to their adult habitats (sensu Beck 
et al., 2001).

Fish larvae often enter estuaries through passages to the open 
sea (e.g., estuary mouths, coastal bays and surf bars; Blaber, 2008), 
and some estuarine fishes spawn over surf bars in these passages 
in many regions of the world (Olds et al., 2017; Sheaves, Molony, 
& Tobin, 1999). Placing oyster reefs near the mouths of estuaries 
might, therefore, enhance the likelihood of reefs being used as 
spawning sites and also promote the likelihood of larval settlement 
(Pichler, Gray, Broadhurst, Spach, & Nagelkerken, 2017). Larval re-
cruitment might also be enhanced by creating more complex and 
taller oyster reefs, which create eddies in which larvae accumulate 
(Breitburg et al., 1995). However, the placement of reefs nearer to 
estuary mouths might increase their vulnerability to being covered 
by moving sediments and oyster disease in some parts of the world 
(associated with higher salinity; Lenihan et al., 1999). Despite this, 
reef beds at the mouths of estuaries may not be self-sustaining if the 
larvae get transported away and there are no seeding populations 
within the interconnected hydrographic systems (Wolanski & Elliott, 
2015).

The growth and survival of juvenile fish depend on the availabil-
ity of quality food and protection from predation (Blaber, 2008). This 
in turn relies on the presence and creation or loss of habitats, which 
again are influenced by habitat change through restoration or an-
thropogenic pressures (Amorim, Ramos, Elliott, Franco, & Bordalo, 
2017). As many coastal fish require multiple habitats throughout 
their lives, especially during early ontogenetic movements, it is the 
quality of both individual habitats and the surrounding seascape 
that enhances nursery value for larval and postsettlement fishes 
(Nagelkerken et al., 2015). Once fish have recruited to oyster reefs, 
or into the surrounding seascape, the area’s value as a nursery is 
determined by food availability, predation pressure, competitive in-
teractions for food and space with cohabitants and the availability 
of alternative foraging and refuge habitats in the seascape (Gittman 
et al., 2016; Pittman, Caldow, Hile, & Monaco, 2007). Oyster reefs 

that are restored in appropriate locations can modify each of these 
features by providing feeding and sheltering opportunities, which 
serve to reduce competition and predator-induced mortality for fish 
on reefs and in adjacent habitats, and might therefore enhance the 
nursery function of coastal seascapes (Figure 4).

3.3 | Consider the impact of fisheries and 
catchment management

Anthropogenic stressors such as run-off from altered catchments 
(Gilby, Maxwell, Tibbetts, & Stevens, 2015; Lerberg, Holland, & 
Sanger, 2000) and overharvesting both in the catchment and at sea 
(Pauly, Watson, & Alder, 2005; Pauly et al., 2003) have substantial 
consequences for marine ecosystem condition and resilience. In 
the context of managing fish stocks associated with restored oyster 
reefs, managers need to consider:

1.	 How to manage fish stocks using catch restrictions, including 
the designation or expansion of no-take reserves; and

2.	 How to manage other potential impacts from the catchment, and 
wider seascapes, in which reefs are located.

This level of management therefore has to respond to a whole suite 
of pressures, both exogenic unmanaged and endogenic ones (Elliott, 
2011). The exogenic pressures, which emanate from outside the man-
agement area and in which management sometimes only be able to re-
spond to the consequences and not the causes, include climate change 
effects, run-off and the loss of breeding fish populations away from 
the site. These can be both out at sea and also elsewhere in the catch-
ment (Elliott et al., 2017). The endogenic managed pressures include 
those impacts in an area such as habitat loss and polluting discharges.

3.3.1 | Fisheries management

The effective management of fisheries in coastal ecosystems relies 
on maintaining a high biomass of large, mature breeding fish. The 
most common management intervention is catch restrictions in the 
form of either reserve (Edgar et al., 2014) or by implementing size 
and bag limits (Bartholomew & Bohnsack, 2005). Notwithstanding 
some uncertainty regarding the survival rates of released individuals, 
and the critical effects of the degree of enforcement (Guidetti et al., 
2008), and fishing effort displaced by reserve declaration (Halpern, 
Gaines, & Warner, 2004; Lédée, Sutton, Tobin, & De Freitas, 2012), 
the consensus is that catch restrictions (i.e., limits on the numbers 
by size class of fish caught by anglers) have positive effects on the 
abundance of harvested species in the great majority of cases (Edgar 
et al., 2014; Tetzlaff, Pine, Allen, & Ahrens, 2013).

Strategically placed reserves, which are wholly no-take, well de-
signed and well policed, increase the abundance and biomass of har-
vested species (Edgar et al., 2014), restore trophic relationships and 
food webs, resulting in habitat improvements (Gilby & Stevens, 2014), 
and in some cases, enhance surrounding fisheries (Halpern, Lester, & 
Kellner, 2009). Where they are designed to form a coherent network, 
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as is required by an increasing amount of legislation globally (e.g., the 
UK Marine and Coastal Access Act), then all the sites have to be con-
sidered as a functional unit. Reserve effectiveness is enhanced by 
protecting multiple fish habitats and the spatial connections, and cor-
ridors, between these habitats (Olds et al., 2016). Thus, we suggest 
that it would be prudent to establish restored oyster reefs in no-take 
marine reserves, and any important connection corridors with adja-
cent habitats (Olds et al., 2012a). We suggest that oyster reefs that are 
restored in optimal positions in heterogeneous seascapes (Bostrom 
et al., 2011; Micheli & Peterson, 1999) and also protected in no-take 
marine reserves, would likely function better for both oysters and fish, 
than restored reefs that are open to fishing (Olds et al., 2016). On the 

contrary, reefs open to nonsustainable oyster harvesting will likely be 
quickly degraded (Kirby, 2004; Rothschild, Ault, Goulletquer, & Heral, 
1994), thereby likely also reducing any value for associated fish com-
munities. However, the degree to which fish biomass on restored oys-
ter reefs is augmented by placement within marine reserves has not 
been tested (Nevins, Pollack, & Stunz, 2014; Table 1).

3.3.2 | Catchment management

Human pressures on estuarine and coastal ecosystems are diverse 
(e.g., pollution, fishing and habitat destruction) and occur through-
out the adjacent catchment and marine areas (Elliott, Cutts, & Trono, 

F IGURE  4 Oyster reefs are one type of fish habitat in coastal seascapes and are functionally linked to other habitats by fish movement. 
(a) Most fish move among multiple habitats during their lives (dark grey arrows). These movements link adult and juvenile habitats, feeding 
and spawning habitats, and ecosystems that are used as stepping stones during migrations and are enhanced when habitats are closer 
together (i.e., higher connectivity). Many species spawn over offshore coral or rocky reefs, and their larvae are washed into estuarine 
nursery habitats (black arrows). (b) Fish use oyster reefs and other complex habitats, in coastal seascapes as stepping stones during 
migrations among estuarine habitats, or from estuarine to offshore habitats (dark grey arrows). By restoring oyster reefs at key locations 
in estuaries, we might enhance the numbers, and quality, of stepping stone habitats and therefore improve the habitat values, productivity 
and carrying capacity of coastal seascapes for fish and fisheries (light grey arrows and ellipse). Symbols courtesy of the Integration and 
Application Network, ian.umces.edu/symbols/ [Colour figure can be viewed at wileyonlinelibrary.com]

Estuarine habitats Offshore habitats

Marsh Mangroves
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TABLE  2 Questions for management where restoration seeks to restore both oyster reefs and surrounding finfish and their fisheries

Broad fields Specific questions for management

Prerequisites

Did oyster reefs historically occur in the 
area?

What was their extent/distribution?

Which species occurred?

What is the timeline and reasons of 
decline/extirpation?

Diseases/pathogens/parasites?

Fishing/harvesting?

Water quality (e.g., suspended solids)?

Has this reason been arrested?

Are there now fewer fish? Evidence of declined biodiversity and/or catches?

Can this be tied to the loss of oyster reefs?

A- Oyster reefs as fish habitats

Do the right habitats and physico-
chemical conditions exist for oysters?

Is there the appropriate elevation/depth?

Is the hydrographic connectivity maintained both upstream and at sea?

Is the salinity, turbidity, primary (plankton) productivity, suitable for settlement, survival and 
long-term growth?

Can the environmental variables that 
affect fish and oysters be matched?

What environmental envelopes does the target oyster species prefer?

What environmental envelopes do the target fish species prefer?

Where are the areas in the estuary in which these values overlap?

Reef structures suitable for fish? How can the growth of invertebrates and small fish be encouraged to enhance feeding opportunities 
for fish?

How does the reef function to improve protection from predation?

B- The seascape context

Is the area available and suitable for reef 
placements?

Restrictions due to shipping, boating or recreational usages?

Restrictions on oyster translocation (e.g., Biosecurity exclusions)?

Linkages to other habitat types? Which alternate habitats (e.g., seagrass, marsh, mangroves) are most important in terms of linkages 
within each system?

Over which scales do these linkages occur?

Can the placement of reefs be optimized under this context to improve carrying capacity?

Linkages to other oyster reefs? Are there sources available for oyster larvae from other reefs?

Can fish use the restored reefs as a network?

Over which scales do these linkages occur?

Can the placement of reefs be optimized under this context to improve carrying capacity?

C- Fisheries and catchment management

Are existing fisheries management 
sufficient?

Do existing bag limits or marine reserves serve to enhance the breeding biomass of fish around reefs?

If no, can, and how might this be changed to do so?

Are existing catchment management 
plans sufficient?

Are there exogenous threats to the survival or growth of oysters and/or fish?

What are they, where do they exist (at the site, upstream, or in the catchment?), and to what degree 
do they influence outcomes for fish and oysters (i.e., in which order should you tackle them?)

What approaches should be taken to minimise or negate their effects?

D- Monitoring and adaptability

Are there appropriate restoration goals? What are the specific, quantifiable goals of restoration?

Are these achievable within the lifetime of the project?

How will monitoring address whether these goals are met?

How will lessons from monitoring be fed back into the management of the reefs or broader estuary?

How will the reefs and fish be 
monitored?

Which metrics, what methods?

How does this relate to the value of the reef habitat for fish (e.g., food and/or protection from 
predators?)?

Fish beyond the reef site? (i.e., at a seascape scale)

How does this relate to the broader project goals?
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2014; Lotze et al., 2006). This suite of exogenic and endogenic an-
thropogenic stressors and their large spatial footprint necessitates 
a broad “land-to-sea” framework for managing potential changes in 
water quality, fish populations and habitats (Cicchetti & Greening, 
2011; Gilby et al., 2016). Oyster reef restoration can be compromised 
by excessive nutrient and sediment inputs (Walles et al., 2016), as-
sociated eutrophic symptoms including hypoxia (Beck et al., 2011) 
and loss of connectivity with functionally linked habitats (e.g., sea-
grasses, mangroves and coastal seas; Nagelkerken et al., 2015; Olds 
et al., 2017; Whitfield, 2017) through either habitat degradation. Fish 
access to reefs and/or estuaries might be limited by blocking of fish 
passage through coastal defences, sandbank development due to low 
river flow from increased abstraction upstream and urban barriers 
and infrastructures (Bishop et al., 2017). The outcomes of oyster reef 
restoration will, therefore, be maximized only when management 
minimizes the deleterious effects of other impacting processes that 
affect the focal estuary and its catchment. The expansion of oyster 
reef habitat can, however, augment other estuarine habitats through 
the introduction of production ecosystem services leading to so-
cietal goods and benefits (Elliott et al., 2017; Turner & Schaafsma, 
2015). These include: (a) improving water quality by reducing excess 
nitrogen (Piehler & Smyth, 2011; Smyth, Piehler, & Grabowski, 2015) 
and filtering particulates, which increases the level of sunlight reach-
ing the seabed (Wall, Peterson, & Gobler, 2008); (b) the fertilization 
of benthic habitats from pseudofaeces (Peterson & Heck, 1999). 
These services facilitate marsh and seagrass habitats, which in turn 
increase fish production (Whitfield, 2017) and again in turn lead to 
increased societal goods and benefits such as commercial fish yields, 
recreation benefits or coastal defences (Turner & Schaafsma, 2015).

3.4 | Monitor reefs and fish across the seascape for 
management, and implement changes where required

Restoration projects should have explicit goals, executed by best 
practices that can be adapted based on results from ongoing moni-
toring and new research (Margules & Pressey, 2000; Wiens & Hobbs, 
2015). Indeed, failed or ineffective restoration is often due to poor 
or ill-defined objectives (Elliott et al., 2016). Hence, management 
of oyster reef restoration projects requires the revision of existing 
management interventions and the refinement of any practices that 
are ineffective (see the lessons learned in Elliott et al., 2016). Thus, 
oyster reef restoration projects should continually measure how 
effective actions are in meeting restoration goals (Wiens & Hobbs, 
2015). While monitoring protocols and metrics for restored oyster 
reefs are established for the reefs themselves (see Baggett et al., 
2015 for specific details), and basic monitoring protocols have been 
detailed for finfish (Baggett et al., 2014), general metrics for assess-
ing how reefs affect the quality of surrounding fish and fisheries, 
beyond the restoration site (i.e., at a seascape scale) have not been 
established.

In general, there are two alternatives to determining whether the 
restored site is performing as desired: one is that a comparison with 
the restored site and another control site (or another control time) 

could be used, or alternatively the environmental managers need to 
clearly indicate what is desired for a restored site and then all of the 
monitoring is to check deviation from that objective; both of these 
are wholly dependent on clear objectives being set for the restored 
site and its dependent populations and species.

The choice of monitoring metrics will largely be determined by 
the goals and objectives of specific projects (McDonald, Jonson, & 
Dixon, 2016). There are, however, several minimum requirements 
that should be met to enable proper estimations of the effects of 
oyster reefs on fish. At a minimum, all monitoring should encompass 
counts of entire fish assemblages at multiple time points and con-
trol sites both before and after restoration. Such a BACI-PS (Before-
After-Control-Impact Paired Series) design is needed to disentangle 
the effects of tidal, seasonal or annual variation on fish assemblages 
(Underwood, 1994) and to measure secondary production (i.e., the 
accumulation of fish biomass over time). It is also desirable to mon-
itor not only restoration and control sites, but also references sites 
or remnant habitats of the type which the restoration effort is aspir-
ing to recreate (Grayson, Chapman, & Underwood, 1999; McDonald 
et al., 2016). The physicochemical environment needs to be moni-
tored as well as the ecological structure and functioning otherwise 
changes in the latter cannot be explained. Ideally, multiple control 
estuaries, with no oyster reef restoration (again following BACI-PS), 
should also be monitored during the period of reef establishment 
and fish recruitment, so that the ecological benefits of oyster res-
toration can be properly separated from any other regional changes 
that might also be affecting oyster reefs and fish assemblages 
(Underwood, 1994). Projects running for a number of years will ben-
efit greatly from measuring the recruitment and size distributions of 
focal species (Shin, Rochet, Jennings, Field, & Gislason, 2005).

As fish move among ecosystems in coastal seascapes (e.g., from 
oyster reefs to other habitats; Nagelkerken et al., 2015), the poten-
tial fisheries benefits of restored oyster reefs will not be restricted to 
the near-field footprint of individual restoration projects but also re-
quire consideration of far-field effects. To establish the extent of any 
such fisheries benefits, it will, therefore, be beneficial to measure 
potential changes to fish assemblages and fish catches at a wider 
seascape scale (i.e., up to km from restored oyster reefs). In essence, 
the monitoring has to cover all component pairs: environment–oys-
ters, environment–fishes, oysters–fishes, oysters–predators and 
fishes–predators. This gives both the structural and functional 
measurements.

In addition to monitoring fish, there are several metrics that 
might be monitored and that are usually correlated or associated 
with the abundance of fish that managers can use to demonstrate 
the effectiveness of oyster reefs for fish and for the ecosystem more 
broadly. Several ecological processes, such as scavenging (Webley, 
2008), predation and nutrient sequestration or turnover (Kellogg, 
Cornwell, Owens, & Paynter, 2013), are intimately linked with the 
abundance of fishes in coastal ecosystems and so are increasingly 
used as measures of ecosystem health (Havstad & Herrick, 2003). 
The use of indicators of ecosystem condition and functioning (e.g., 
indicator species and umbrella species) is increasing for estuaries 
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globally (e,g. Gilby, Olds, Connolly et al., 2017; Montagna, Estevez, 
Palmer, & Flannery, 2008; Valesini, Cottingham, Hallett, & Clarke, 
2017). However, further studies are required to identify potential 
indicator species that might be useful for oyster reefs; especially 
those that might be used to compare patterns across biogeographic 
regions (Table 1). As restored oyster reefs accumulate fish bio-
mass, they might also alter the spatial distribution of fishing effort 
in coastal seascapes (i.e., fishing could easily become concentrated 
over successful oyster reefs). Otherwise, depending on the gear 
used, the reef may discourage bottom trawling thereby acting as a 
de facto no-take zone. Hence, monitoring potential changes in the 
distribution of fishing effort (e.g., mapping anglers and commercial 
fishing in relations to reefs) is, therefore, necessary to investigate 
how the combined effects of restoration and fishing alter fish as-
semblages on oyster reefs.

It has been recommended that the settlement and growth of 
oysters on restored reefs should be monitored for up to 6 years post 
installation (Baggett et al., 2015). Fish assemblages will continue to 
change through this period (i.e., as oyster reefs become established) 
and could take upwards of 10 years to develop (zu Ermgassen et al., 
2016). Monitoring recovery towards the generic standards provided 
by McDonald et al. (2016) would therefore reduce ambiguity around 
goals and success.

These criteria should of course be considered as ideal or optimal 
sampling regimes. Gathering of even basic abundance and diversity 
data at individual sites should be considered an important goal for all 
oyster reef restoration projects. Likewise, cost-effective methods of 
measuring habitat size and/or quality using, for example, LIDAR or 
drone techniques, will deliver rapid information on the supporting 
ecosystem services.

4  | DISCUSSION

Oyster reef restoration is costly, so restoration efforts should seek 
win–win scenarios (e.g., for ecology and economy), where oyster 
reef restoration achieves multiple benefits (e.g., shoreline stabiliza-
tion and enhancement of fisheries productivity). Restoring oyster 
reefs augments fish biomass relative to bare substrata and integrat-
ing several key concepts from estuarine fish ecology into the de-
sign and monitoring of restoration projects will help maximize their 
return on investment. Placing complex reef structures in strategic 
locations within heterogeneous estuarine seascapes might enhance 
estuarine habitat diversity and promote the performance of restored 
oyster reefs for fish and fisheries. The physical installation of oys-
ter reefs should not be viewed as the final outcome of restoration 
programs. Restored reefs must be managed, together with other 
impacting processes that might threaten restoration success (e.g., 
fishing, sedimentation and eutrophication), and monitored over time 
to maximize the accumulation of fish biomass and the benefits of 
restoration for fisheries (Margules & Pressey, 2000; Wiens & Hobbs, 
2015). Oyster reef restoration projects that account for the reef 
designs or placements that might serve to maximize the utility of 

seascapes for fish will lead to greater fish diversity, abundance and 
harvestable fish biomass throughout coastal ecosystems. As shown 
in this manuscript, there are several important research questions 
that need addressing (Table 1); however, there are also several im-
portant questions for managers to ask based on existing literature 
when aiming create successful and sustainable reefs for finfish and 
their fisheries (Table 2). By understanding the need for appropriate 
management measures and targets (such as those in Table 2) which 
have to respond to the large uncertainties in the ecological function-
ing, then the likelihood of successful and sustainable reefs can be 
enhanced.

In many instances, there are logistic and legislative challenges 
to optimizing the design, positioning, management and monitoring 
of reefs according to these criteria. For example, the locations in 
which oyster reefs can be restored might be limited by regulations 
concerning shipping, recreational activities or habitat conservation 
(e.g., legislative protection of marine plants). They may be limited by 
a poor knowledge of historical evidence of oysters or the unknown 
reasons for the decline of the previous stocks. Funding agencies 
might also prefer simple oyster reef designs for ease of installation, to 
limit costs, or to maximize their accessibility (Kingsley-Smith, Stone, 
Keppler, & Leffler, 2015). In many instances, the actual design of oys-
ter restoration projects will be a compromise across these multiple 
constraints and depend on specific project goals. For example, the 
enhancement of fisheries may be secondary to shoreline stabilization 
under some scenarios. Notwithstanding these challenges, if the goal 
of oyster reef restoration is to enhance fish populations and bene-
fit fisheries it is imperative to optimize the habitat values, seascape 
context and ongoing monitoring and management of restored reefs.

The restoration of habitats and biodiversity is valued by society 
and can convey significant psychological benefits to users (Fuller, 
Irvine, Devine-Wright, Warren, & Gaston, 2007; Rey Benayas, 
Newton, Diaz, & Bullock, 2009). Successful restoration projects that 
improve the condition of habitats or enhance fish populations, also 
provide valuable ecosystem services and societal goods and benefits 
(e.g., food provision, bank reinforcement and biodiversity enhance-
ment) and are, therefore, an asset to local people. Restoring lost hab-
itats should be viewed as a significant achievement, irrespective of 
the goals of the project or whether fisheries are enhanced by the 
restoration efforts. By better integrating the goal of supplementing 
fish and fisheries, with the objectives of oyster reef restoration, we 
might therefore increase stakeholder engagement (La Peyre et al., 
2012) and help to ensure that restored oyster reefs function opti-
mally within socio-ecological systems. In essence, the aim will be 
to improve the ecological structure and functioning and not merely 
achieve an exercise of more value “to the ecologists than the ecol-
ogy” (Elliott et al., 2016).

Further development of these concepts requires ongoing in-
vestigation of the effects of oyster reef restoration on fish assem-
blages. Designing oyster reef structures that are attractive as both 
sources of food and refuges from predation must be a priority for 
oyster reef restoration projects where restoring fish and fisheries is 
also a goal (research priorities 1 and 2, Table 1). While many studies 
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have demonstrated that reefs serve as nursery and adult finfish 
habitats and augment fish production locally (10s to 100s m), the 
next critical step is to determine whether these benefits convey to 
fish populations (e.g., Peterson et al., 2003), ecological functions 
(e.g., Rodney & Paynter, 2006) or nursery values (Nagelkerken 
et al., 2015) at larger spatial scales (km to 10s of km) beyond the 
reef sites. Furthermore, while studies have demonstrated that bet-
ter connected reefs harbour more animals (e.g., Gain et al., 2017), 
the degree to which these metrics of fish and fish-associated eco-
logical functions are enhanced across different types of seascapes, 
whether these effects are consistent, and which oyster reef designs 
optimize the effects is unclear (research priorities 3 and 4, Table 1). 
Properly managing fish biomass on, and around, restored oyster 
reefs requires a clearer understanding of how people interact with 
reefs and how these interactions might modify the responses of 
recovering fish communities (research priority 5, Table 1). To help 
optimize future restoration projects for finfish, we must identify 
suitable indicators that can be used to measure restoration suc-
cess for finfish specifically (research priority 6, Table 1). There is 
now an accepted list of attributes required by suitable indicators 
(e.g., Elliott, 2011) to ensure that not only are they operational but 
that managers will know when they have been reached. Hence, the 
central function of management being that measures (such as res-
toration) will be seen to achieved the desired aims.

Restoring oyster reefs can have significant, often positive, ef-
fects for fish and fisheries. The management and research recom-
mendations presented here are a basic set that can be expanded, 
refined and adapted by individual projects to best match goals and 
objectives and can be easily integrated into most projects. We em-
phasize that the effectiveness of oyster reef restoration projects for 
fish and fisheries can be improved by optimizing the habitat values 
and seascape context of individual reefs, by managing other impact-
ing processes and through adaptive monitoring with appropriate in-
dicators of restoration performance.
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