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1.  INTRODUCTION

Inshore and coastal ecosystems are exposed to
multiple stressors that act individually, but may also
have interactive effects in combination (Lotze 2006,
Brodie et al. 2013, Chapman 2017, Waterhouse et al.

2017). Stressors are influenced by local anthro-
pogenic factors, global climate change and natural
climate variability (Brown et al. 2014, Baird et al.
2016, Dafforn et al. 2016, Chapman 2017). Predicting
the combined impacts of more than one stressor is
complicated, and their interacting effects are not
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 routinely considered in risk assessments (Crain et al.
2008, Brown et al. 2014, Chariton et al. 2016, Côté et
al. 2016, Dafforn et al. 2016). Ecological risk assess-
ments (ERAs) are frequently used by management
agencies to manage stressor inputs and inform deci-
sions for ongoing monitoring and management. In -
corporating multiple interacting stressors into ERAs
is a high priority for environmental management
(Halpern et al. 2008a, Van den Brink et al. 2016,
Waterhouse et al. 2017), yet the vast majority of the
most recent ERAs still treat environmental stressors
separately (Brodie et al. 2013, Waterhouse et al.
2017) and as a consequence, the management of
coastal ecosystems does not consider stressor inter-
actions (Griffiths et al. 2019).

The problem with incorporating multiple-stressor
research into risk assessments is that there are more
combinations of stressors and potential interactions
than can be empirically quantified by scientists (Côté
et al. 2016); therefore, management relies on mod-
elled predictions. To better predict stressor interac-
tions in organisms and ecosystems, further research
is needed to develop ecological process models that
can evaluate the likely effects of any combination of
stressors (Brown et al. 2014, Van den Brink et al.
2016). Models that draw upon information regarding
mode of action may indicate whether responses to
simultaneous stressors are independent, combined or
interactive (Traas et al. 2002). For example, stressors
that act on the same receptor (i.e. similar mode of
action) could suggest similar types of interactions
(Boyd & Brown 2015). Using models to predict the
combined and interacting effects of stressors on eco-
systems will allow ERAs to predict the environmental
impacts of stressors that co-occur and enable man-
agement bodies to adapt decisions to cumulative
impacts (Van den Brink et al. 2016, Chapman 2017,
Bracewell et al. 2019). For example, the risk of photo-
system II (PSII)-inhibiting herbicides to aquatic eco-
systems may be severely underestimated because
they are typically considered individually (Solomon
et al. 2000, Van den Brink et al. 2006, Luo et al. 2011,
Jesenska et al. 2013) but usually occur in mixtures
with other pesticides and stressors (Lewis et al. 2012,
Smith et al. 2012, Huggins et al. 2017, Warne et al.
2020).

Aquatic photosynthetic organisms are important
primary producers; thus, identifying their physio -
logical responses to natural and anthropogenic stres-
sors is essential to understanding important con -
nections and interactions in ecosystem dynamics.
Primary pro ducers include seagrasses, algal epi-
phytes (e.g. algae attached to seagrass leaves), mar-

ine microalgae (phytoplankton), benthic microalgae
and macro  algae. Seagrass and marine microalgae, in
particular, are important to coastal ecosystem func-
tioning, nutrient cycling; they provide habitat and
food for a variety of organisms as well as stabilizing
substrate (Lee & Dunton 1996, Orth et al. 2006, Lee et
al. 2007), and are likely to be affected by multiple
stressors due to their proximity to anthro po genic
stressors derived from terrestrial activities (Raven &
Geider 2003, Halpern et al. 2008b, Collier et al. 2016,
Wallace et al. 2016). Following periods of elevated
rainfall, pollutants including excess suspended sedi-
ments, nutrients and pesticides are transported in
runoff from agricultural land to the inshore marine
environment (Huggins et al. 2017, Waterhouse et al.
2017) and have specifically been targeted as the 3
key pollutants contributing to poor water quality in
the Great Barrier Reef (GBR) Marine Park, Queens-
land, Australia (Brodie et al. 2013, Waterhouse et
al. 2017). However, excess nutrients as a result of
anthropo genic activities are not considered to be a
‘direct’ stressor to phototrophic species, as low to
moderate nutrient enrichment promotes rather than
inhibits photosynthetic growth (Jaschinski et al.
2010). As such, nutrients as a stressor will not be con-
sidered further in this review. In contrast, increasing
turbidity due to excess total suspended sediment (i.e.
generated from anthropogenic activities) causes a
de crease in the photosynthetically active radiation
available to seagrass and microalgae (Fabricius 2011,
Devlin et al. 2012). In addition, PSII-inhibiting herbi-
cides inhibit photosynthesis, which can deplete energy
reserves and reduce growth. Therefore, reduced light
(from increased turbidity) alongside PSII-in hibiting
herbicides has the potential for more than additive
effects on phototrophic growth, productivity, abun-
dance and distribution of seagrass and microalgae
(Lee & Dunton 1996, Lee et al. 2007, Brodie et al. 2008,
Collier et al. 2012, Negri et al. 2015). The impacts of
these stressors can also make inshore ecosystems
more vulnerable to other impacts of climate change
and more intense and frequent weather events.

Here, we reviewed experiments that studied the
effects of PSII-inhibiting herbicides and light reduc-
tion (via anthropogenic inputs of excess total sus-
pended sediment and increased phytoplankton bio-
mass) on the net photosynthetic efficiency and
growth of seagrass and marine microalgae. We
focused on these primary producers as they are two
of the most abundant flora in the GBR lagoon. Sea-
grasses form nursery habitats for fish and inverte-
brates, sequester carbon and support the nutrition of
herbivorous fish and macrograzers, such as sea tur-
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tles and dugongs (Beck et al. 2001). Marine micro-
algae form the base of many food webs and con-
tribute to nutrient cycling in marine waters (Arrigo
2005, Reynolds et al. 2014). The objectives of this
research were to (1) quantitatively review the exper-
imental literature to identify gaps in the geo graphies,
stressor combinations and physiological endpoints
that have been studied; (2) review the available
information on the modes of action of how the stres-
sors impact photosynthetic physiology; and (3) gen-
erate hypotheses of how these stressors will interact,
based on the latest understanding of modes of action.

2.  METHODS

2.1.  Database acquisition

The ISI Web of Science (https://apps.webof
knowledge.com) database was searched for both sea-
grasses and marine microalgae using the terms stated
in Table 1. The latest searches were conducted in
March 2020. The Web of Science database retrieves
more citation results compared to the Google Scholar
and Scopus databases, and thus has the most repre-
sentative coverage of the literature (Adriaanse &
Rensleigh 2013). Field terms for Web of Science are
defined as follows: ‘TS’ finds records with terms in the
abstract, title or keyword fields; ‘ALL’ finds records
with terms anywhere in the full record; ‘AND’ acts as
a Boolean function that requires multiple terms to be
present together; and 'OR' acts as an operator that
must include one or more of the terms.

The first line of the search term ensured that the
bulk of the obtained literature related to seagrasses/
microalgae. The second line of the search criteria
was designed to capture alternative terms for ‘photo-
system II inhibition’. The third line was intended to
target studies that tested the following stressors:

PSII-inhibiting herbicides and/or light reduction/
increased shading and total suspended sediment.
Additional papers that were relevant to the search
criteria were obtained from other sources including
co-authors, citations and reference lists, as well as
from conducting further searches using the same
terms in the ‘simple search’ function. The search was
limited to peer-reviewed journal articles.

2.2.  Database filtering and analysis

Papers were retained for analysis if they (1) used
ecologically relevant or sub-cellular endpoints to
assess the impact(s) of the stressor(s) and/or (2) iden-
tified the type of interaction that occurs as a result of
multiple stressors in coastal ecosystems. Ecologically
relevant and sub-cellular endpoints, where the effect
is likely to occur based on the mode of action of the
stressor(s) and the sites of impact (i.e. photosynthe-
sis) were defined based on whether or not it nega-
tively affected the ecological competitiveness of an
organism (i.e. its ability to increase the frequency of
its genes in subsequent generations) (Warne et al.
2018). For papers to be included in the data set, they
needed to assess impacts of herbicide- and/or light-
stressor on seagrasses and/or marine microalgae.
 Pa pers were removed if they were non-English,
conduc ted prior to 1990 (to reflect the most up-to-
date science), used polar or freshwater microalgae
species, used communities of seagrass/microalgae
rather than a specific species or examined the photo-
synthetic activity of seagrass seeds.

Meta-data from each individual exposure experi-
ment within a paper was extracted and treated as an
independent ‘experimental’ result. For example, if
one paper tested 3 herbicides for 2 seagrass species,
a total of 6 individual experiments were recorded in
the database from that paper.

217

Seagrass Microalgae

Search terms (TS=(seagrass* OR macrophyte) AND (TS=(microalga* OR ‘micro alga*’) AND

ALL=(photosystem* OR PSII) AND ALL=(photosystem* OR PSII) AND

TS=(herbicide OR light OR shad* OR TS=(herbicide OR light OR shad* OR 
sediment OR ‘suspended sediment’)) sediment OR ‘suspended sediment’))

Total citations 401                                                                                 585

Relevant citations 64                                                                                   36 
(No. of experiments) (142)                                                                               (176)

Table 1. Search terms used for seagrass and microalgae, with total citation count and the number of citations that were relevant
for analyses. The number of experiments refers to relevant individual exposure experiments within a paper. See Section 2.1 for 

definition of search terms
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3.  RESULTS

3.1.  Semi-quantitative synthesis of the literature

3.1.1.  Database overview

The search terms resulted in 401 seagrass papers
and 585 microalgae papers. Of these, a total of 64
seagrass papers and 36 microalgae papers (Tables S1
& S2, respectively, in the Supplement at www. int-res.
com/ articles/ suppl/ m668 p215 _ supp. pdf) re  ported
physiological responses to high and low light expo-
sure and/or PSII-inhibiting herbicides. These papers
were therefore deemed appropriate for inclusion in
the analyses. This resulted in data from 142 individ-
ual seagrass experiments and 176 individual micro-
algae experiments.

The majority of the 142 seagrass experiments were
conducted in tropical regions (73%) compared to the
small proportion of experiments conducted in tem-
perate regions (27%). The largest per-
centage of seagrass papers were from
Australia (46%), followed by the USA
(12%), China (9%), Mexico (5%) and
11 other countries that each contri -
buted ≤3% of the remaining papers.
Of the 30 Australian seagrass papers,
more than half (53%) were from the
GBR World Heritage Area. The re -
maining Australian papers originated
from New South Wales (30%), Victo-
ria (10%), South Australia (3.3%) and
Western Australia (3.3%).

The majority of marine microalgae
experiments were temperate (80%),
with fewer tropical experiments (20%).
The marine microalgae papers were
more evenly spread across countries
compared to that for seagrasses. The
largest percentage of the microalgae
studies were from Australia (19%), fol-
lowed by China (14%), The Nether-
lands, Italy and Spain (each 11%),
France and the USA (each 8%) and 6
other countries that each contributed
<3% of the remaining papers.

There were twice as many seagrass
papers assessing the effects of high or
low light exposure compared to those
assessing the effects of herbicides
(40 versus 20, respectively). Similarly,
there were more than twice as many
microalgae papers that assessed the

effects of light compared to those that assessed the
effects of herbicides (26 versus 10, respectively).

Of the 142 individual seagrass experiments, the
majority (62%) were conducted in a laboratory as
opposed to those conducted in situ (23%) and in
outdoor mesocosms (13%) (Fig. 1a). Three experi-
ments (2%) did not state the type of study (i.e. lab,
in situ or mesocosm). As the literature search ex -
cluded studies that used microalgae communities
rather than a specific species, almost all of the
176 individual marine microalgae experiments were
conducted in a laboratory (97%), with only 2%
conducted in situ and 1% conducted in a mesocosm
(Fig. 1b).

3.1.2.  Studies on stressors

Most of the seagrass and marine microalgae exper-
iments (85% [122 experiments] and 81% [143 exper-
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Fig. 1. Number of experiments (by country and study type) where (a) seagrass
and (b) marine microalgae were exposed to light and photosystem II-inhibiting 

herbicides as stressors
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iments], respectively) assessed the effects of an indi-
vidual stressor, with only 16% (20 experiments) of
seagrass experiments and 18% (33 experiments) of
marine microalgae experiments assessing the effects
of 2 or more stressors.

Some studies identified a combined effect between
stressors and stated how one stressor altered the
effects of the other. In this study, ‘combined effects’
were identified as being the additive responses,
whereas ‘interactive effects’ were identified as being
responses where one stressor directly influenced
another and led to synergistic (more than the addi-
tive effects) or antagonistic (less than the additive
effects) relationships. Of the 20 multiple-stressor ex -
periments conducted on seagrass, only 60% (12 ex -
periments) identified a combined and/or interactive
effect (Table 2). There were 6 additive effects, 3
antagonistic and 2 synergistic. In addition, one ex -
periment identified a statistically significant inter -
active effect of the stressors on seagrass but did not
specify the type (Table 2). In comparison, 22 of the
33 multiple-stressor experiments (67%) conducted
on marine microalgae identified a combined and/or
interactive effect (Table 2). There were 13 additive
effects and 6 synergistic. Additionally, 3 experiments
identified a statistically significant effect for the stres-
sors on marine microalgae but did not specify the
type of response (Table 2).

3.1.3.  Test endpoints used

A total of 21 endpoints were used to assess the im-
pact of light and/or herbicides on seagrass, compared
to 12 endpoints that were used to assess the impacts of

these stressors on marine microalgae. Endpoints were
sorted into 9 broader  categories as presented in Fig. 2;
for example, fluorescence and chlorophyll a content
were grouped into the ‘photosynthesis’ endpoint cate-
gory. Photosynthetic and growth endpoints (59 and
34% of tests, respectively) were most commonly used
for seagrass stressor effects, whilst photosynthetic
endpoints alone (78% of tests) were most commonly
used for marine microalgae, with oxidative stress and
mortality contributing the remaining 22% of assessed
endpoints. Photosynthetic endpoints, such as fluores-
cence, were the most commonly reported endpoints,
which may indicate a propensity for using smaller-
scale over larger-scale (such as growth) endpoints for
stressors such as light and PSII-inhibiting herbicides.
This may be because fluorescence is a specific and
sensitive bioindicator of plant stress whilst being
quick and easy to measure via technologies such
as pulse amplitude modulated fluorometers (Seddon
& Cheshire 2001, Küster & Altenburger 2007, Wil kin -
son et al. 2015). Endpoints of photosynthetic  condition
are highly responsive and biologically meaningful as
they can have flow-on effects to other phy siological
responses and overall plant health (Negri et al. 2015).
Photosynthetic endpoints are useful to study the re-
sponses of stress conditions to phototrophic species as
they indicate a reduction in photosynthetic capacity
and efficiency of the plant that is directly associated
with growth and primary production (Magnusson et
al. 2008, Malapascua et al. 2014, Negri et al. 2015).
Even for non-PSII-inhibiting herbicides where the
photosystem complex is not targeted (e.g. glyphosate,
the active ingredient in Roundup®), similar metabolic
pathways may be affected (Inderjit & Kaushik 2010,
Qiu et al. 2013, Gomes & Juneau 2016) and are there-

fore relevant. The broader-scale effects,
such as impacts on growth and the pop-
ulation density of species, can then
have flow-on effects that negatively in-
fluence the ecological function (i.e.
food, habitat) of primary producers. As
a result, it is important to also assess re-
sponses on smaller scales alongside
broader scales to obtain a better under-
standing of molecular, physiological
and individual effects in ‘real-time’.
Overall, a greater selection of endpoints
were used to assess the impacts of light
on seagrass compared to herbicides,
whereas the opposite was observed for
marine microalgae with more endpoints
being used to assess the impact of her-
bicides than the impact of light (Fig. 2).
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Stressor Seagrass Microalgae
combinations Add Syn Ant Sig Add Syn Ant Sig

HL + PSII 1 1 1
LL + PSII 1a

PSII + PSII 2 1 12 3
PSII + other stressor 1b 1d 1b 2b

HL + other stressor 1b 1b 1b

LL + other stressor 2b 1b 1c

Total responses 12 22

aLower toxic response of PSII-inhibiting herbicides under low light condi-
tions; bElevated temperature; cLowered temperature; dCopper

Table 2. Number of seagrass and microalgae multiple-stressor experiments
that identified additive (Add), synergistic (Syn) or antagonistic (Ant) effects,
and number of experiments where the effect was found to be significantly dif-
ferent from the controls (Sig; p ≤ 0.05). HL: high light; LL: low light; PSII: 

photo system II-inhibiting herbicide
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3.1.4.  Light stressor studies

For seagrass, a total of 66 experiments assessed the
impact of light as a stressor in tropical (70%) and
temperate (30%) regions. Of these, 30 experiments
assessed the effects of light limitation such as shad-
ing stress either individually or in combination with
another stressor. In comparison, 29 experiments
assessed the effects of light saturation (i.e. higher
than optimum) either individually or in combination
with another stressor. There were 28 experiments
that failed to identify if the light levels tested were
considered saturating or limiting for the seagrass
species used.

In comparison, a total of 50 marine microalgae ex -
periments assessed the impact of light as a stressor
on tropical (10%) and temperate (90%) species. Of
these, 14 experiments assessed the effects of light
limitation whilst 40 experiments assessed the effects
of light saturation either individually or in combina-
tion with another stressor. There were 6 experiments
that failed to identify if the light levels tested were
considered saturating or limiting for the microalgae
species used.

It is important to note that the counts of limiting-
and saturating-light experiments do not equal the
total number of experiments that assessed the effect
of light on seagrass and marine microalgae, as vari-
ous experiments consisted of multiple treatments
that used both light levels.

3.1.5.  PSII-inhibiting herbicide stressor studies

Of the experiments that assessed the effects of her-
bicides, there were 83 seagrass experiments and 128
marine microalgae experiments that used a PSII-
inhibiting herbicide. The most commonly tested PSII-
inhibiting herbicides were diuron (~26%), atrazine
(~17%), hexazinone (11%) and tebuthiuron (~10%).
Only 5 seagrass experiments (5.7%) and no marine
microalgae experiments used non-PSII-inhibiting
herbicides in exposure combinations, which is likely
an artefact of the search terms used.

PSII-inhibiting herbicides were used individually
and in mixtures when testing on seagrass and marine
microalgae. The majority of herbicide experiments
(~82 and 81% of seagrass and marine microalgae ex -
periments, respectively) used PSII-inhibiting herbi-
cides individually (as a single stressor), with a small
proportion testing mixtures of PSII-inhibiting herbi-
cides (~9 and 16%, respectively), mixtures of PSII-
inhibiting herbicides and non-PSII herbicides (~4
and 0%, respectively) and in mixtures with non-her-
bicide stressors (~5 and 3%, respectively) (Fig. 3).

3.1.6.  Light−PSII stressor interactions

Only two of the studies (Sjollema et al. 2014, Wilkin -
son et al. 2015) assessed the effects of both light and
PSII-inhibiting herbicides in combination whilst also
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Fig. 2. Number of experiments (by endpoint category) where seagrass (SG) and marine microalgae (MA) were exposed to 
light and photosystem II-inhibiting herbicides as stressors
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identifying a combined and/or interactive relationship.
One seagrass study (Wilkinson et al. 2015) assessed
the effects of a PSII-inhibiting herbicide (diuron) and
light in combination. This test looked at moderate irra-
diance rather than light re duction and compared the
measured photosynthetic efficiency of PSII to that pre-
dicted using the independent action (IA) model of joint
action (Bliss 1939, Plackett & Hewlett 1952). Photosyn-
thetic efficiency was measured, both in the light-
adapted (photosynthetic yield, ΔF/Fm’) and in the
dark-adapted (quantum yield, Fv/Fm) state. A predom-
inantly additive ef fect was identified after exposing
Halophila ovalis to a combination of varied light levels
(100, 200 and 400 μmol photons m−2 s−1) and diuron
concentrations (0−100 μg l−1) for an acute exposure of
24 h. The photosynthetic yield (light-adapted state) re-
sponse clearly showed an additive effect, whereas the
quantum yield (dark-adapted state) response showed
an antagonistic effect (Wilkinson et al. 2015).

One marine microalgae study (Sjollema et al. 2014)
assessed the effects of diuron and irgarol (both PSII-
 inhibiting herbicides) with varying light intensities.
That study looked at seasonal variation in irradiance,
where Dunaliella tertiolecta was adapted to 2 differ-
ent light intensities (~244 and ~929 μmol photons m−2

s−1 representative of autumn and spring, respec-
tively), before being exposed to varying concentra-
tions of the PSII-inhibiting herbicides. The experi-
mental setup did not explicitly test for interactions
between PSII- inhibiting herbicides and light stress
but rather assessed the toxicity of herbicides after
pre-adaption to different natural light conditions. A
higher toxic response was identified from the PSII-
inhibiting herbicides in higher light conditions
(spring), whereas the herbicides were less toxic in
lower light conditions (autumn).

3.2.  Synthesis of modes of action for stressors

This section explores the impacts of PSII-inhibiting
herbicides and light availability on the physiology of
seagrass and microalgae. A selection of endpoints
was assessed to identify changes in aquatic plant
productivity and health, via hierarchical links of cel-
lular, individual and whole-organism effects follow-
ing chronic exposure to PSII-inhibiting herbicides
and low light availability (Table 3).

3.2.1.  Responses to PSII-inhibiting 
herbicide exposure

PSII-inhibiting herbicides exert their toxicity in
aquatic phototrophs, such as seagrasses and marine
microalgae, by blocking electron transport in the PSII
complex — a key process of photosynthesis that oc -
curs in the thylakoid membranes of chloroplasts
(Ahrens 1994). PSII-inhibiting herbicides bind to the
plastoquinone B (QB) protein-binding site on the D1
protein in the PSII complex (Ahrens 1994). This in
turn produces 2 adverse physiological responses.
The first response prevents the transport of electrons
to synthesise ATP (used for cellular metabolism) and
NADPH in the chloroplast, used in converting CO2 to
glucose. This limits the fixation of CO2 and the pro-
duction of nutrients needed for the plant to grow and
survive (Ahrens 1994, Wilson et al. 2000).

The second response is the increased formation of
reactive oxygen species (ROS) (Halliwell 1991).
These are highly reactive forms of oxygen that read-
ily react with, and bind to, biomolecules including
DNA and RNA. They are formed during photosyn-
thesis when the absorbed light energy exceeds a
plant’s physiological ability to convert CO2 to organic
molecules and leads to accumulating ROS (Chen et
al. 2012). Normal concentrations of ROS are involved
in a number of cellular processes (Chen et al. 2012).
However, when a PSII-inhibiting herbicide blocks
the electron transport chain (ETC), electron concen-
trations increase, causing the formation of excess
ROS (Halliwell 1991). Prolonged exposure to ele-
vated concentrations of ROS in plants, algae and
cyanobacteria can cause irreversible cell damage
and ultimately lead to cell death (Halliwell 1991).

Starvation via inhibited photosynthesis may not be
the primary cause of PSII-inhibiting herbicide in -
duced plant death. Rather, the second physiological
process causing photo-oxidative damage through
increased ROS may be the primary cause of mortality
(Negri et al. 2015). This process initiates the damage
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Fig. 3. Percentage of seagrass and marine microalgae exper-
iments that assessed the effects of photosystem II (PSII)-
inhibiting herbicides individually, in a mixture with other
PSII-inhibiting herbicides (PSIIs), in mixtures of PSIIs and 

non-PSIIs and in mixtures with non-herbicide stressors
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of electron transport components and protein struc-
ture faster than plant starvation occurs (Vass 2011);
therefore, under moderate to high light conditions, it
is predicted that exposure to PSII-inhibiting her -
bicides is more likely to cause mortality via the
 generation of ROS rather than via the inhibition of
photosynthesis (Jones 2005). In contrast, low light
conditions result in less ROS being formed (Corbett
et al. 1984); however, the effects of PSII-inhibiting
herbicides may compound the effects of light limita-
tion on growth (Sjollema et al. 2014).

3.2.2.  Responses to light availability

Seagrass species have relatively high light require-
ments compared to other aquatic phototrophs such as
algae (Collier et al. 2016). A reduction in light avail-
ability, either through decreased water clarity (in -
creased turbidity from increased total suspended
sediment) or shading by epiphytic algae, is a major
driver of seagrass decline (Orth et al. 2006, Fabricius
et al. 2014). Similar to the processes explained in
Section 3.2.1, shading reduces the number of elec-
trons transported along the ETC in the chloroplast
thylakoid membranes of the PSII complex (Ahrens
1994). During photosynthesis, this electron transport
synthesizes ATP and NADPH, allowing CO2 fixation
reactions to occur, which are necessary for cell func-
tion and metabolism (Ahrens 1994, Wilson et al.
2000). However, under sub-optimal and low light
conditions, the rate of photosynthesis will either
become equal to or less than the rate of respiration
depending on the level of shading (whereas under
optimal light, the rate of photosynthesis exceeds the
rate of respiration). Therefore, when light availability
is reduced, there is a net loss of ATP available to
drive photosynthesis and, ultimately, plant growth.

Once the minimum light threshold of a plant is
reached, only respiration occurs where inter-cellular
O2 concentrations decrease and CO2 concentrations
increase (i.e. a high CO2:O2 ratio occurs) (Rasmusson
et al. 2017). In contrast, high light intensities result in
a low CO2:O2 ratio, which initiates a pathway of
photo respiration. However, the process of photo -
respiration generally only occurs in C3 plants. As a
result, photorespiration is absent in C4 plants such as
seagrasses and microalgae (a C3 plant, but with C4

pathways), meaning only respiration occurs (von
Caemmerer & Furbank 2003).

Exposure to high intensity light (i.e. greater than
the physiological saturation point of plants) can
cause stress by elevating concentrations of ROS in

plant tissues (Asada 1999, Ralph & Gademann 2005,
Janknegt et al. 2008, Waring et al. 2010). Primarily,
ROS inactivate the repair of PSII when light satu-
rated rather than damaging it directly (Nishiyama et
al. 2011). In this way, increased light may cause sig-
nificantly more inhibition to plant growth than the
inhibition of photosynthesis via a PSII-inhibiting
 herbicide (Jones 2005).

The effects of low light stress on ROS accumulation
are not yet clear, with studies finding increases in
some situations and decreases in others. In general,
plant stress is expected to increase ROS accumulation.
Oxidative stress in the marine microalga Du naliella
salina increased slightly when exposed to low light
conditions for 24 h (Madadkar Haghjou et al. 2006).
However, these microalgae experiments were con-
ducted at temperatures that were lower than optimum
for the species (optimum temperature of 28°C; test
temperature of 13°C). Therefore, the reported ROS
re sponses could be the result of temperature stress
alone or in combination with shading stress.

Several lines of evidence suggest that shading may
reduce oxidative stress. One study concluded that
shading may protect phytoplankton communities from
oxidative damage (Barros et al. 2003). A de tailed study
of a cactus species, Hylocereus undatus, demon-
strated that levels of ROS significantly de creased
after 60 d of shading because ROS-scavenging
enzymes were operating at a higher capacity (Wang
et al. 2018). Similarly, a study of the seagrass Thalas-
sia hemprichii also found increased ROS- scavenging
under low light conditions after 10 d, resulting in a
net decrease of ROS (Jiang et al. 2013). A 3 wk study
conducted on the seagrass species Cymo do cea
nodosa also found that shading either did not in -
crease ROS concentrations or there was adequate
ROS-scavenging activity to regulate ROS (Silva et al.
2013). These studies suggest that cellular ROS con-
centrations are maintained or reduced via increased
ROS-scavenging when shaded.

4.  DISCUSSION

Only 16% of the seagrass stressor experiments and
18% of the marine microalgae stressor experiments
assessed the combined effects of 2 or more stressors.
The low proportion of studies testing interactions is
consistent with similar reviews of experimental and
field stressor studies (Brown et al. 2011, Wernberg et
al. 2012, O’Brien et al. 2019, Stockbridge et al. 2020).
Of the multiple-stressor studies we reviewed, only
2 tested for interactive effects of light and PSII-
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inhibiting herbicides (see Section 3.1.6); however,
both used moderate to high light. There were no
studies that specifically assessed the combined effects
of PSII-inhibiting herbicides and low light levels on
seagrass or marine microalgae. The need to quantify
the combined and/ or interactive effects of multiple
stressors for coastal ecosystems is well recognized,
and this review has confirmed this knowledge gap
for seagrass and marine microalgae systems.

The mode of action of PSII-inhibiting herbicides is
intrinsically linked to light availability. For example,
the toxic effects of PSII-inhibiting herbicides in crease
with increasing light intensity (O’Neal & Lembi 1983,
Millie et al. 1992), whereas in the ab sence of light,
these herbicides are ineffective (Gomes & Juneau
2017). PSII-inhibiting herbicides do not cause toxicity
in complete darkness because photosynthesis is not
occurring and ROS are not being formed (Corbett et
al. 1984). Therefore, the response of PSII-inhibiting
herbicides on photosynthetic organisms is heavily
de pendent on the prevailing light conditions (Sjol -
lema et al. 2014).

We hypothesize that increased shading will help
limit the formation of ROS that normally occurs from
PSII-inhibiting herbicide exposure (Table 3). This is
because less light is available for when the PSII-
inhibiting herbicide blocks electron transport, result-
ing in reduced photodamage from ROS activity (Vass
2011). On the other hand, blocking the ETC by PSII-
inhibiting herbicides under chronic low light condi-
tions would add to the low light stress that results
from reduced electron transport (Halliwell 1991,
Ahrens 1994). In addition to the effects of oxidative
stress, exposure to low light availability and PSII-
inhibiting herbicides reduce photosynthetic effi-
ciency and carbon fixation, which in turn decrease
energy stores within the organism (rapidly for micro-
algae, slower for seagrass), and that ultimately
causes starvation or reduced growth (Popels et al.
2007, Flores et al. 2013, He et al. 2015). Therefore,
the overall impact on the organism will arise from
many different physiological mechanisms ranging
from cellular to whole-organism responses, which
depend primarily on the level of light availability
(Table 3).

The relationship between PSII-inhibiting herbicide
exposure and light limitation is complex, as the stres-
sors are in continual flux (Negri et al. 2015). When
photosynthetic organisms are exposed to PSII-
inhibiting herbicides and low light in combination,
the interaction is likely to be additive or antagonistic,
depending on the measured endpoint (Table 2).
Often, direct measurements of smaller-scale end-

points such as fluorescence will not account for intra-
cellular damage such as increased ROS; therefore,
additive effects may be more prominent. However,
higher-scale endpoints such as growth and mortality
will account for secondary sites of impact that will
more readily show antagonistic effects. Under low
light and PSII-inhibiting herbicide exposure, the pos-
sibility of antagonistic effects is hypothesized due to
a potential positive (beneficial) pathway of low light
to growth as a result of decreased ROS production.
The possibility of antagonistic effects aligns with lit-
erature findings, where one study reported a lower
toxic response when marine microalgae were ex -
posed to a mixture of PSII-inhibiting herbicides in
lower light conditions compared to higher light con-
ditions (Sjollema et al. 2014). Despite not explicitly
testing for interactive effects, this is the only study
from the preceding literature review that assessed
the effects of PSII-inhibiting herbicides and low light
on marine microalgae and/or seagrass. Therefore,
further experimental studies are required to quantify
individual physiological responses — specifically be -
cause of possible mitigative feedbacks via the ROS
pathways.

PSII-inhibiting herbicides and light reduction can-
not be considered directly interchangeable from a
management perspective as the primary physiologi-
cal effects are not identical (Table 3). This finding is
important because earlier studies hypothesized that
different stressors with similar modes of action will
have similar types of interactive effects (Boyd &
Brown 2015, Snell-Rood & Kobiela 2020). The pres-
ent study indicates that this will not be true of PSII-
inhibiting herbicides and low light because the phys-
iological pathways involved in the stress responses
are slightly different. However, the net impact they
have on phototrophic organisms may be comparable.
For example, an environmentally relevant concen-
tration of the commonly used PSII-inhibiting herbi-
cide diuron (0.4 μg l−1), has a potential shading
equivalency of 10% (via suspended sediments and
algae during flood plumes) based on photosynthetic
efficiency (Negri et al. 2015). As a result, it might be
possible, using ecological models, to predict and
quantify the overall impacts of PSII-inhibiting herbi-
cides and shading that occur together, provided
those models account for interactions among physio-
logical pathways — particularly the production of
ROS.

We have identified 5 important knowledge gaps
that need to be addressed so that ERAs can better ac-
commodate the interactive effects of low light and
PSII-inhibiting herbicides (Table 4). These knowledge
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gaps were identified based on the literature review,
with a final aim of developing predictive models that
can inform management of interactive stressors. We
suggest that translating experimental observations
into predictive models requires (1) utilising ecologi-
cally relevant responses for both the organisms and
stressors being tested; (2) measuring these responses;
(3) testing for generalities across a broader range of
aquatic plant species; (4) integrating experimental
measurement studies with modelling studies to
bridge the gap between what is measured and the
para meters that are needed for models; and (5) devel-
oping predictive models of aquatic plant responses to
multiple stressors. Addressing the knowledge gap of
how each physiological process responds to stressors
in combination (gap 2, Table 4) is crucial in under-
standing important connections and identifying
compensatory feedback loops for predictive models.
This will enable a better understanding of whether
smaller-scale (physiology) endpoints translate to the
same aggregative response at higher-scale (whole-
 organism) endpoints (gap 1, Table 4).

Whilst the combined and/or interactive effects of
light availability and PSII-inhibiting herbicides were
the focus for this review, other stressors such as nutri-
ents (Howarth et al. 2000), chemical pollution (Shahi -
dul Islam & Tanaka 2004, Wu et al. 2008), ocean acid-
ification (Doney et al. 2009, Kroeker et al. 2010) and
temperature (Somero 2002, Levitus et al. 2012) are
also known to affect coastal ecosystems. For ins -
tance, during summer months, light availability and
PSII-inhibiting herbicides also often coincide with
periods of elevated surface water temperature
(Berkel mans 2002, Massa et al. 2009, Rasheed &
Unsworth 2011, Collier & Waycott 2014). For micro-
algae, the combined physiological effects between
light availability and PSII-inhibiting herbicides can
be strongly influenced by temperature (Gomes &
Juneau 2017). These same interactive effects for sea-
grasses remain unclear in the literature; however,
studies suggest that light reduction and high tem -
peratures cause significant reductions in seagrass
growth (Bulthuis 1987, Ralph 1999a, Collier et al.
2011, Collier & Waycott 2014). This is because high
temperatures increase the rate of respiration, which
means that higher light levels are required for the
production of carbon to exceed the rate of respiration
(Ralph et al. 2007, Collier et al. 2011, 2016). There-
fore, during periods of low light the rate of photosyn-
thesis decreases, which in turn increases the likeli-
hood that the rate of respiration may exceed the rate
of photosynthesis. This implies that low light and
higher than optimum temperatures could have an

additive negative effect on seagrass growth. This
additive effect has been confirmed in experimental
studies (Hughes 2000), which suggests there are
negligible benefits from reduced ROS production
under low light stress.

This study did not consider ecological feedbacks,
but these could also be an important cause of stressor
interactions. For example, a common stressor that was
not addressed in this study is the excess of nu trients
discharged to coastal waters as a result of anthro-
pogenic activities (e.g. fertilising). Often, excess nutri-
ents are not considered to be a ‘stressor’, as low to
moderate nutrient enrichment promotes photosyn-
thetic growth rather than inhibiting it (Ja schinski et
al. 2010). However, high inputs of nutrients (i.e. dis-
solved inorganic nitrogen such as NO3

− and NH4
+)

into aquatic environments can cause eutrophication
and thus increased phytoplankton biomass (Martin-
Jézéquel et al. 2015). Increased phytoplankton, or al-
gal blooms, shade seagrass from prevailing light
(Short et al. 1995, Fertig et al. 2013) and are a signifi-
cant cause of seagrass decline globally (Waycott et al.
2005, McMahon et al. 2013). Thus, there is an impor-
tant nutrient-driven connection between the 2 taxa
reviewed here that warrants  further study.

5.  CONCLUSIONS

In Australia, including the GBR lagoon, excess sedi-
ments and nutrients as well as low levels of pesticides
occur in flood plumes discharging from adjacent
catchments. Flood plumes with high levels of fine sed-
iment have been linked to declines in seagrass. Yet it
is also known that phytoplankton blooms commonly
occur after flood plumes, indicating that different
phototrophic species respond to these anthro pogenic
stressors in different ways. Understanding the com-
bined and/or interactive effects of these stressors is
important for management to under stand the full ex-
tent of impact from poor water quality, as current risk
and management targets are only evaluated for indi-
vidual pollutants (Brodie et al. 2017). We suggest that
predictions of stressor interactions on seagrass and
microalgae may be made based on the latest under-
standing of stressor modes of action. Understanding
the physiological responses to stressors can generate
hypotheses on the combined and/or interactive effects
of water quality stressors. The overall combined re-
sponse of low light and PSII-inhibiting herbicides is
likely to be heavily dependent on the magnitude of
each, as well as exposure time and ecological feed-
backs. Therefore, it is imperative that potential mit-

226



King et al.: Predicting multi-stressor interactions

igative physiological responses be investigated fur-
ther through experimental studies that assess varying
levels of PSII-inhibiting herbicides and light reduction
over acute and chronic exposure periods.
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