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Chapter 6
Biogeochemical Cycles: Global Approaches 
and Perspectives

Erik Kristensen, Rod M. Connolly, Xose L. Otero, Cyril Marchand, 
Tiago O. Ferreira, and Victor H. Rivera-Monroy

6.1  �Introduction

Mangrove wetlands are intriguing ecosystems because they share biological, geo-
chemical, and ecological properties from both terrestrial and marine environments 
(Alongi 2009; Mitsch and Gosselink 2015). The mangrove ecosystem is 
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characterized by dense growth of highly productive trees and shrubs (Tomlinson 
1994; see Chap. 1). They provide most of the primary production, although other 
autotrophs, including pelagic, benthic, and epiphytic algae may also contribute sig-
nificantly to the organic input (Kristensen et al. 2008a). The export of autochtho-
nous production and import of allochthonous material are strongly dependent on 
complex spatio-temporal hydrological patterns regulated by large-scale physical 
and geomorphological processes. From a biogeochemical perspective, the input of 
organic and inorganic matter from various sources and their mixing within the man-
grove ecotone create highly spatially and temporally heterogeneous sediments with 
microbial processes that are challenging to understand and evaluate. The available 
biogeochemical information is yet to be integrated into a generalized ecosystem 
model due to the wide variety of geomorphic settings and mangrove ecotypes within 
and among biogeographical regions (Twilley and Rivera-Monroy 2005).

Although the ecological functioning of mangrove environments has been 
described for a variety of climatic regions (e.g., tropical, subtropical) and ecogeo-
morphic settings (e.g. deltas, lagoons, estuaries, oceanic islands) (e.g. Bouillon 
et al. 2007; Adame and Lovelock 2011; Alongi et al. 2012), our understanding of 
how carbon (C), iron (Fe), sulfur (S), and nutrient (e.g. N and P) cycling are con-
trolled and interact in these locally diverse environments is still developing. The 
research has come predominantly from Australasia and North America, with less 
from locations in Oceania, Asia, Africa, and Central and South America. Information 
from the understudied regions is, therefore, required to achieve a full global over-
view. Additional knowledge on the spatiotemporal patterns of biogeochemical 
mechanisms and processes will improve the reliability of mangrove C and nutrient 
budgets as well as estimates of the impact of human activities on global cycles 
(Bouillon et  al. 2008; Pendleton et  al. 2012). Organic matter decomposition in 
mangrove sediments is mediated by microbial processes utilizing a variety of elec-
tron acceptors under a wide range of redox conditions (Kristensen and Alongi 
2006; Ferreira et al. 2007a; Kristensen et al. 2011). The fraction of mangrove detri-
tus that escapes degradation and export is a significant source of in situ C sequestra-
tion via accretion and storage (Bouillon 2011; Donato et al. 2011; Pendleton et al. 
2012). The accumulation and residence time of C stocks, however, depends strongly 
on the interaction among local environmental and biological variables such as 
hydrology, plant activity, crab foraging, and bioturbation (Lee 1997; Kristensen 
2008; Mitsch and Gosselink 2015). It is, therefore, imperative not only to evaluate 
mangrove biogeochemical patterns among biogeographical regions but also to 
examine the spatio-temporal variability within each region with focus on anthropo-
genic impacts.

The main objective of this chapter is to advance our understanding of the biogeo-
chemistry of mangrove wetlands by comparing differences in element cycling at 
biogeographical scales. Through a comparative literature review, we identify poten-
tial sources of variation when applying different methods and techniques and pro-
vide an understanding of the small- and large-scale variability as well as complexity 
of biogeochemical transformations in these productive wetlands. Our goal is, 
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therefore, to identify knowledge gaps, and thus research priorities, in biogeochemical 
cycling of C and other critical macro (N, P) and micro (e.g., Fe, Mn) elements in 
mangrove environments across biogeographic regions and latitudes.

6.2  �Characteristics of Mangrove Substrata

6.2.1  �Terms and Definitions; Sediment or Soil?

The operational differentiation between sediments and soils in coastal and wetland-
dominated environments has been an ongoing discussion since the insertion of the 
“subaqueous soil” term in the Soil Taxonomy classification (Soil Survey Staff 1999; 
Ferreira et al. 2007a; Kristensen and Rabenhorst 2015). This discussion has its gen-
esis in the different methodological and conceptual approaches historically fol-
lowed by soils scientists (pedologists) and marine scientists and reflects on the 
current understanding of biogeochemical processes in mangrove wetlands. The 
development of the subaqueous soil concept was based on the original work by 
Demas and colleagues (Demas et  al. 1996; Demas and Rabenhorst 1999) who 
defined sediment layers as a function of pedogenesis and proposed the presence of 
subaqueous soil horizons in wetlands. Along the same line, Ferreira et al. (2007a) 
argued that sedimentary material (the parental material) that is permanently colo-
nized by higher vascular plants interacting with fauna and microbial activity leads 
to substantial changes in the composition and properties of the original substratum. 
These changes transform the original sediment to a more complex, geochemically 
contrasting environment, which should lead to soil formation. However, the devel-
opment of oxic or suboxic mosaics within anoxic layers due to plant–substratum 
interactions is not only associated with soil formation, but is also common in sub-
tidal sediments affected by bioturbation and roots of submerged vegetation 
(Kristensen and Rabenhorst 2015).

Demas and Rabenhorst (1999) argued that pedogenic processes leading to hori-
zon differentiation are required to consider estuarine substrata as soils. The forma-
tion of soil horizons through pedogenesis includes four generalized processes: 
additions, losses, transfers (or translocations), and transformations (Simonson 
1959). Conversely, the biogeochemical zonation of aquatic sediments is controlled 
by sediment diagenesis, which includes the composition of deposited material and 
the involved physical, chemical, and biological processes (Burdige 2006; Aller 
2014). The generalized pedogenic processes are, therefore, a subset of the sediment 
diagenetic processes. Under this perspective, Kristensen and Rabenhorst (2015) 
pointed out that pedogenic processes identified by pedologists in shallow water 
environments cannot be distinguished from the diagenetic processes described for 
sediments by marine scientists and concluded that the terms “sediment” and “soil” 
to describe the substrata in coastal environments vegetated by mangrove forests are 
not mutually exclusive.

6  Biogeochemical Cycles: Global Approaches and Perspectives
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Thus, under these perspectives, which term should be used? In this chapter, we 
compromise and use the term sediment as a more general historic term. It is not our 
objective to prefer one term over the other, but to underscore the context of the argu-
ments currently still under discussion (see Ferreira et  al. 2007a; Kristensen and 
Rabenhorst 2015). Our own research and interdisciplinary approach in writing this 
chapter has motivated us into an inclusive approach to advance the understanding of 
mangrove wetland spatiotemporal biogeochemical processes and functions. 
Particularly, in trying to fulfill one of the objectives of the chapter where “both sci-
entific communities (i.e., pedologists, and marine scientists) will benefit from com-
parable studies in the same environments, (recognizing that) their different 
backgrounds may even promote collaborations with the developments of new ideas 
and revolutionary concepts” (Kristensen and Rabenhorst 2015).

6.2.2  �Litter Fall and Sediment Organic Matter

Organic matter delivered to microbial decomposers in mangrove sediments is of 
both autochthonous and allochthonous origin. Litter from mangrove trees (i.e., 
leaves, propagules, twigs, and wood) is usually considered the most important 
source of organic C and nutrients to mangrove sediments (Alongi et  al. 2005a; 
Sousa and Dangremond 2011; Murdiyarso et al. 2015). A range of other sources 
may also provide significant inputs; including below-ground mangrove roots, as 
well as local production by benthic or epiphytic micro- or macroalgae, phytoplank-
ton in tidal creeks or estuarine waters, and materials imported via rivers (e.g. ter-
restrial tree litter) or tides (e.g., seagrass)(Kristensen et  al. 2008a; Alongi 2009; 
Twilley and Rivera-Monroy 2009; Adame and Lovelock 2011; Leopold et al. 2015). 
Because of its important functional role, the quantification of litter fall is crucial for 
assessing productivity of a mangrove ecosystem and thus forest organic matter con-
tribution to benthic food webs in both the mangrove and its adjacent coastal envi-
ronment (Imgraben and Dittmann 2008).

Annual litter fall, which is the most widely used proxy of mangrove net produc-
tivity, differs substantially within and among forests due to a number of factors 
including tidal and hydrological gradients (Feller et al. 1999), salinity (Day et al. 
1996), anthropogenic influence (Silva et al. 1998), mangrove species composition 
(Coupland et  al. 2005), and latitude (Twilley et  al. 1992; Saenger and Snedaker 
1993). The global average mangrove litter fall, which is in the order of 
~460 g C m−2 year−1 (range: 48–924 g C m−2 year−1), does not show a clear biogeo-
graphical trend (Twilley et al. 1992; Saenger and Snedaker 1993; Jennerjahn and 
Ittekkot 2002) due in part to major differences in ecotype dominance and spatial 
distribution within latitude (Twilley et al. 1998). There are apparently some distinct 
differences in productivity and litter fall among mangrove species, for example, 
Rhizophora spp. shows about 50% higher litter yield than Avicennia spp. (Bunt 
1995). It must be stressed, however, that most available estimates of mangrove pro-
duction do not include wood and below-ground components (Middleton and McKee 
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2001; Castaneda-Moya et al. 2013). Current below-ground biomass estimates indi-
cate that this component contributes a substantial part (10–55%) of the total man-
grove biomass (Twilley et  al. 1992; Matsui 1998; Alongi and Dixon 2000; 
Rivera-Monroy et al. 2013) and probably account for a similar part of the total pro-
ductivity. The ongoing effort to establish a latitudinal-based network of eddy-
covariance towers in mangrove coastal regions in the near future might improve net 
mangrove ecosystem productivity estimates to include both above- and below-
ground production (Rivera-Monroy et al. 2013; see Sect. 6.4).

Regardless of differences in organic matter sources and pathways through food 
webs among mangrove forests, all organic matter not exported by tidal exchange 
enters the sediment where it is consumed, degraded, or buried. Mangrove sediments 
are relatively rich in organic C with an estimated global particulate organic carbon 
(POC) median value of 2.6% (Kristensen et al. 2008a), ranging from 2.2% in the 
Indo-west-Pacific (IWP: East Africa, Asia, and Australasia) to 3.1% in the Atlantic-
East Pacific region (AEP: West Africa and America) (Fig. 6.1), which is higher than 
generally observed in marine sediments (Seiter et  al. 2004) and terrestrial soils 
(Donato et  al. 2011). Current available information indicates that the fraction of 
organically enriched mangrove sediments having POC content >10% is higher in 
America (23%) and Asia (19%) than in East Africa (8%) and Australasia (6%) 
(Fig. 6.1). These differences in POC among regions are difficult to explain and may 
be confounded by variations within and among mangrove forests depending on 
hydrological regimes (i.e., hydroperiod) and mangrove species composition as well 
as other structural and environmental variables (Alongi 2012). The median sedi-
ment molar POC/PN ratios also vary among regions, ranging from 18 to 19 in East 
Africa and Asia to 24 to 25 in America and Australasia (Fig. 6.1). Most mangrove 
sediments have POC/PN ratios above 10 (100% in America; 96% in East Africa; 
98% in Asia; and 92% in Australasia), whereas POC/PN ratios above 30 are more 
frequent in America (24%) and Australasia (34%) than in East Africa (9%) and Asia 
(5%). Although the generally high POC/PN ratios indicate that mangrove sediments 
contain a significant input of mangrove litter, the large differences among regions 
may indicate higher inputs of N-rich marine organic matter coupled with global dif-
ferences in rivers and river flows and more extensive eutrophication in East Africa 
and Asia than in America and Australasia (Lee 2016).

In addition to the substantial deposition of litter from mangrove canopies, vege-
tation structure has a profound impact on the magnitude of sedimentation by actively 
capturing mineral and organic particles (Furukawa et al. 1997). Large trees with 
complex aerial root systems (e.g. tree height >10 m), such as Rhizophora species, 
facilitate the retention and deposition of particles from tidal currents to a much 
greater extent than smaller trees with simpler architecture, such as Avicennia spe-
cies. Accordingly, sediments under Rhizophora stands are often richer in POC than 
under Avicennia stands (Table 6.1). However, this difference is not always evident 
and may in some cases be reversed due to location-specific and climatic-driven dif-
ferences in litter fall rates, litter composition, and hydrological patterns. This is 
evident from Table 6.1 where two Rhizophora mangle locations in the Americas 
support the lowest sediment POC.  Variations in mangrove zonation pattern may 
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Fig. 6.1  Compilation of (left) bulk POC and (right) bulk POC:TN ratios of intertidal mangrove 
sediments from four biogeographical subregions. Data compiled from various sources (Modified 
from Kristensen et al. 2008a)
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partly explain this biogeographic difference in both retention and deposition of POC 
(Twilley et al. 1992; Chmura et al. 2003). Intertidal position may also affect POC 
deposition as frequently exposed upper intertidal mangrove areas are often domi-
nated by simple scrub vegetation with limited POC accumulation capacity due to 
evaporation-driven high porewater salinity (>50) (Adame et al. 2010; Deborde et al. 
2015). Conversely, mangrove margins and adjacent intertidal mudflats where tall 
and dense fringing mangrove stands dominate are often sites of higher POC accu-
mulation (Sanders et al. 2010). However, changes in hydrodynamics, especially tur-
bulent kinetic energy from waves and currents at the edge of the forest, may alter 
sediment/organic matter deposition and its interaction with different species of 
mangroves and density of roots (Wolanski et al. 1990; Zhang et al. 2015).

The complex composition of mangrove litter with high content of structural 
organic polymers and polyphenolic compounds (e.g., cellulose, lignin, and tannins) 
hampers degradation and promotes long-term preservation of organic C once these 
organic substrates enter anoxic conditions in waterlogged sediments (Hernes et al. 
2001; Marchand et al. 2005; Alongi 2009). Although detrital POC from litter fall is 
a mixture of more or less refractory biomolecules in various stages of decomposi-
tion, it also contains labile components (mainly amino acids, proteins, and sugars). 
Root exudates are particularly rich in these reactive components and may represent 

Table 6.1  Sediment content of POC and TN in mangrove forests from around the world dominated 
by Rhizophora spp. and Avicennia spp. Only data from sediments underlying forests of about the 
same age (15–30 years) and same intertidal location (mid-intertidal) are included

Location Tree species POC (%) TN (%) Ref

Pambala, Sri Lanka Rhizophora apiculata 19.1 ± 2.4 1.04 ± 0.13 1
Avicennia officinalis 10.4 ± 1.7 0.64 ± 0.05 1

Pichavaram, India Rhizophora apiculata 10.0 ± 1.9 0.70 ± 0.01 2
Avicennia marina 7.0 ± 1.0 0.42 ± 0.01 2

Dampier, W. Australia Rhizophora stylosa 6.5 ± 1.3 0.23 ± 0.03 3
Avicennia marina 1.4 ± 0.1 0.09 ± 0.01 3

Port Hedland, W. Australia Rhizophora stylosa 2.3 ± 1.1 0.13 ± 0.02 3
Avicennia marina 1.7 ± 0.2 0.16 ± 0.02 3

Ras Dege, Tanzania Rhizophora mucronata 4.3 ± 1.1 0.18 ± 0.07 4
Avicennia marina 2.9 ± 0.3 0.11 ± 0.02 4

Gazi Bay, Kenya Rhizophora mucronata 4.4 ± 1.4 0.23 ± 0.06 5
Avicennia marina 2.2 ± 1.8 0.11 ± 0.05 5

Somone, Senegal Rhizophora sp. 1.7 – 2.1 – 6
Avicennia sp. 0.3 – 0.6 – 6

Balandra Bay, Mexico Rhizophora mangle 3.7 ± 1.8 0.16 ± 0.08 7
Avicennia germinans 7.9 ± 4.0 0.32 ± 0.17 7

Itacuruca, Brazil Rhizophora mangle 2.7 ± 0.1 0.17 ± 0.01 8
Avicennia schaueriana 4.6 ± 1.3 0.26 ± 0.08 8

(1) Bouillon et al. (2003); (2) Alongi et al. ( 2005b); (3) Alongi et al. (2000a); (4) Kristensen et al. 
(2011); (5) Andreetta et al. (2014); (6) Sakho et al. (2015); (7) Giani et al. (1996); (8) Lacerda et al. 
(1995)
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an important source of labile POC in sediments densely vegetated by mangrove 
trees (Reddy and DeLaune 2008; Weng et al. 2013). Such subsurface sources of 
reactive POC may be the principal drivers of fast microbial processes deep in man-
grove sediment in contrast to oceanic sediments, where partly degraded POC from 
the water column is deposited at the surface, and slowly buried through active sedi-
mentation and accretion. The reactivity, rather than the quantity of POC, is, there-
fore, a key factor driving anaerobic respiration in mangrove sediments (Opsahl and 
Benner 1999; Tremblay and Benner 2006).

6.2.3  �Sediment Geochemical Characteristics

Redox processes involving reactive Fe are important for sediment biogeochemistry 
in most mangrove areas. The actual role of Fe in any mangrove ecotype depends on 
the availability and delivery of reactive forms and the concentration is typically high 
in tropical mangrove regions receiving surface runoff and groundwater from adja-
cent land and watersheds with Fe-rich soils (Souza-Júnior et al. 2007; Sanders et al. 
2012; Gonneea et al. 2014; Noel et al. 2014). Much of the Fe delivered to sediments 
occur as solid phase Fe(III) oxyhydroxides (Table 6.2). These forms are generally 
very reactive and can be reduced considerably faster than solid phase crystalline 
Fe(III), such as silicate-bound Fe. The reactivity of Fe(III) forms to undergo reduc-
tion by microorganisms typically follows the sequence: iron phosphate tetrahydrate 
(FePO4•4H2O) > ferrihydrite (Fe10O14(OH)2) > iron hydroxide (Fe(OH)3) > lepidro-
crocite (γ-FeO(OH)) > goethite (α-FeO(OH)) (Fischer and Pfanneberg 1984; Roden 
and Zachara 1996). Once amorphous Fe(III) forms more reactive than goethite has 
been reduced, sulfate reduction becomes energetically favorable (Canfield et  al. 
2005). This shift in microbial reactions may be the reason for the presence of goe-
thite in mangrove sediments dominated by sulfate reduction (Otero et  al. 2009). 
Dissolved Fe2+ generated by reduction of solid phase Fe(III) oxyhydroxides may 
either diffuse to oxic layers where it is reoxidized and precipitated as Fe(III) forms, 

Table 6.2  Chemical species and characteristics of iron oxides, with information on crystal 
structure, color, weight-specific area of reactive surfaces, and reactivity (Adapted from Cornel and 
Schwertmann 1996; Canfield et al. 1992; Poulton et al. 2004)

Mineral name Crystal structure Color
Surface area 
(m2 g−1)

Reactivity 
(yr−1)

Ferrihydrite 
(Fe10O14(OH)2)

Trigonal Reddish-brown 200–400 500–2200

Lepidocrocite 
(γ-FeO(OH))

Orthorhombic Orange 15–260 85–557

Goethite (α-FeO(OH)) Orthorhombic Yellowish-
brown

30–90 4–22

Haematite (α-Fe2O3) Trigonal Bright red 10–36 1–12
Magnetite (Fe3O4) Cubic Black 20–60 10−2–4
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or precipitate in anoxic sediment as carbonate (siderite, FeCO3), phosphate (vivian-
ite, FePO4), or sulfide (mackinawite, FeS and pyrite, FeS2), depending on the sedi-
ment geochemical conditions (Fig.  6.2). As a result, Fe speciation changes 
dramatically with depth in mangrove sediments from dominance of Fe(III) oxyhy-
droxides near oxic surfaces to primarily pyrite (FeS2) in reduced layers. Close spa-
tial coupling of iron and sulfate reduction favors rapid precipitation of Fe(II) sulfides 
as mackinawite (FeS) that may act as a transient phase in pyrite formation (Holmer 
et al. 1994; Butler and Rickard 2000; Ferreira et al. 2007b). Analyses using scan-
ning electron microscopy and dispersive X-ray spectroscopy have revealed that 
pyrite framboids are commonly formed along mangrove roots (Noel et al. 2014). 
However, newly formed pyrite near sediment interfaces can be rapidly reoxidized to 
amorphous Fe(III) oxyhydroxides by oxygen intrusion through the action of tides, 
bioturbation, plant roots, and seasonal changes in hydrology (Noel et al. 2014).

The spatial heterogeneity of redox processes is much more complex and variable 
in intertidal mangrove sediments with high abundance of roots and burrows than in 
oceanic sediments (Fig.  6.3; Otero et  al. 2006; Ferreira et  al. 2010). The upper 
60–100 cm of the sediment is normally characterized by a substantial redox varia-
tion, in some cases without any clear vertical trend. However, redox models consis-
tently show an oxidized surface zone of variable thickness (upper oxidation zone) 
overlying a zone with more reducing conditions (upper reduced zone; Clark et al. 
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1998). The thickness of the upper oxidation zone in mangrove forests typically 
ranges from <2 cm at the seaward edge to >10 cm near the landward edge (Clark 
et al. 1998). The upper oxidation zone may vary seasonally and can disappear when 
intense rain causes prolonged flooding events, or expand after long drought periods. 
These changes are particularly evident in the high intertidal part of the forest, where 
tidal inundation normally is infrequent (Marchand et  al. 2004, 2006). Below the 
upper reduction zone, a second oxidizing layer is found (lower oxidation zone) at a 
depth that can vary between 30 and 60 cm (Clark et al. 1998). The oxidizing effect 
in this layer is the result of downward translocation of oxygen by bioturbation and 
via aerenchyma tissue in roots followed by release into the sediment (Fig. 6.3). The 
lower oxidation zone is actually a mosaic of alternating oxidizing areas near bur-
rows and roots and reduced areas away from biogenic structures (Kristensen and 
Alongi 2006). The thickness of the lower oxidation zone depends on the forest 
structure, mangrove species composition, and hydrological regime (Marchand et al. 
2006). Thus, this zone is typically less distinct in Avicennia spp. than in Rhizophora 
spp. dominated forests due to the restricted root depth of the former (Fiala and 
Hernandez 1993). Finally, a permanently reduced layer (lower reduced zone) with 
high pyrite content is found below the root penetration depth (Clark et al. 1998; 
Marchand et al. 2006; Otero et al. 2009).

The redox depth profiles and spatial distribution also vary among biogeographi-
cal regions and types of mangrove forest (basin, fringe, scrub, overwash, and river-
ine; Lugo and Snedaker 1978). For example, monospecific Rhizophora mangle 
forests in Sao Paulo State (SE Brazil) show redox conditions that vary according to 
their physiographic position (Ferreira et al. 2007c). Basin forests in this region have 
strongly reducing conditions throughout the sediment profile, whereas fringe and 
riverine forests typically have oxidized surface sediments (Table 6.3). Similar to the 
vegetation zones, the intertidal gradient also affects the redox zonation. The 

Fig. 6.3  Vertical redox zones in mangrove sediment. The drawing to the left indicates the position 
of Avicennia spp. roots. All redox relevant microbial reactions and transport processes are 
indicated

E. Kristensen et al.
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infrequent tidal flooding near the mangrove landward side may result in the forma-
tion of numerous mud cracks due to desiccation allowing downward penetration of 
oxygen causing oxidation of deeper sediment layers (Marchand et al., 2011; Noel 
et al., 2014; Deborde et al., 2015). Consequently, Fe and S redox cycling intensifies 
significantly from the landward to seaward section of mangrove forests due to dif-
ferences in duration and frequency of tidal inundation (Noel et al. 2014). Moreover, 
the higher tree productivity generally observed toward the seaward front of the for-
est may lead to strongly reduced sediment conditions because of lower saline stress, 
higher input of labile POC, and faster microbial activity.

6.3  �Factors Affecting Element Cycling in Mangrove 
Sediments

Rates and pathways of microbial C and nutrient transformation in mangrove sedi-
ments are dependent on a number of key factors. The most important are organic 
matter input, availability of electron acceptors, bioturbation activity, and presence 
of tree roots, as well as geomorphology and hydrology (Canfield et  al. 2005; 
Kristensen et al. 2008b; Mitsch and Gosselink 2015). The reactivity of organic mat-
ter toward microbial degradation using a variety of electron acceptors maintains a 
delicate redox zonation (Ferreira et al. 2007b). However, this zonation can be inter-
rupted by downward translocation of oxygen via crab burrows and tree roots 
(Kristensen and Alongi 2006). C oxidation by heterotrophic microbial communities 
in mangrove environments is also dependent on the interaction between tidal eleva-
tion and hydroperiod (frequency, duration, and depth of inundation). Release of CO2 
may in certain cases vary several folds during different tidal conditions with the 
highest rates observed during low tide promoting degassing through air exposure 
(Alongi et al. 2004; Kristensen and Alongi 2006). It is not yet fully understood how 
this CO2 exchange is controlled, but large biogenic structures (e.g. pneumatophores 

Table 6.3  Geochemical characteristics of near-surface sediment in various forest types of Sao 
Paulo State, Brazil (Ferreira et al. 2007b)

Location
Forest 
type

Depth Sand TOC Eh Total S Total Fe Fe oxides Pyrite Fe
cm % % mV % % % %

Cardoso 
Island

Basin 0–15 12 8.5 −52 1.85 2.46 0.46 0.57

Riverine 0–15 86 2.0 102 0.35 0.57 0.15 0.09
Paimatos 
Island

Fringe 0–15 8 5.2 300 0.80 5.63 0.79 0.22

Baixada 
Santista

Riverine 0–10 15 23.7 331 2.89 3.23 0.17 0.73
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and crab burrows) may have an important role as conduits for O2 intrusion and CO2 
release (Kristensen et al. 2008b).

6.3.1  �Carbon Oxidation and Partitioning of Electron Acceptors

Sediment C oxidation can be quantified as CO2 release in the dark, which represents 
the sum of all aerobic and anaerobic respiration processes and provides a reliable 
estimate of the total organic matter decomposition occurring within the sediment 
(Kristensen et al. 2011). To obtain the actual dark CO2 fluxes in intertidal mangrove 
environments, measurements should be performed both during inundation and air 
exposure. The global average dark CO2 release from inundated mangrove sediments 
is 62  mmol  m−2  d−1 (range: 8–224  mmol  m−2  d−1) and 44  mmol  m−2  d−1 (range: 
4–156 mmol m−2 d−1) for air-exposed sediments (Table 6.4). The variability in fluxes 
among study sites is undoubtedly a valid indication of regional environmental differ-
ences. However, the quite inconsistent differences between inundated and air-
exposed rates must partly be caused by the applied methodological approach. Most 
of the reported CO2 fluxes are probably underestimated, particularly during air expo-
sure because measurements are typically performed on bare sediment away from 
trees and burrows. Air-exposed pneumatophores and open crab burrows considerably 
increase CO2 release by efficient translocation of CO2 gas from deeper sediments. 
For example, measurements of CO2 efflux in a Tanzanian mangrove forest revealed 
that 100 pneumatophores per m2 of the mangrove species Sonneratia alba and 
Avicennia marina released about 170 and 60 mmol CO2 d−1, respectively, whereas 
100 crab burrows (Uca spp.) per m2 released about 90 mmol CO2 d−1 (Kristensen 
et al. 2008b). However, the contribution of biogenic structures to CO2 exchange may 
vary among mangrove ecotypes and biogeographical regions, depending on man-
grove species composition as well as the abundance of both trees and burrowing 
crabs (see Sect. 6.3.3; Araújo et al. 2012). Future studies on sediment metabolism in 
mangrove environments, therefore, need to incorporate the role of aerial roots and 
crab burrows when quantifying sediment CO2 exchange and estimating reliable 
whole-forest C budgets (Rivera-Monroy et al. 2013; Troxler et al. 2015).

Microbial electron acceptor utilization in mangrove sediments follows the same 
energy yield sequence observed in other marine sediments: O2, Mn4+, NO3

−, Fe3+, 
and SO4

2−(Kristensen et  al. 2000; Alongi et  al. 2005b). Aerobic microorganisms 
have the enzymatic capacity for complete oxidation of organic C to CO2 using oxy-
gen as electron acceptor (Canfield et al. 2005). In contrast, anaerobic heterotrophic 
processes occur stepwise involving several competitive respiration pathways (Mn 
respiration, denitrification, Fe respiration, and sulfate reduction) (Canfield et  al. 
2005). However, the bioavailability of organic macromolecules requires the prior 
intervention of fermenting microorganisms to generate low molecular organic sub-
strates (e.g. lactate, butyrate, propionate, and acetate) that allow uptake and metabo-
lism by anaerobic respiring microorganisms (Valdemarsen and Kristensen 2010). 
The specific role of each respiration process depends on the environmental setting 
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(e.g., salinity, hydroperiod), biota composition (e.g., plant and crab species), and 
biogeographical factors (e.g., temperature, precipitation) at the local scale. Aerobic 
degradation of labile materials near the mangrove sediment surface is usually so 
rapid that O2 rarely penetrates more than 2 mm into the sediment (Kristensen et al. 
1994). Most of the sediment, therefore, remains largely anoxic, except for transloca-
tion of oxygen deep into the sediment through a network of roots and infauna bur-
rows (Kristensen and Alongi 2006).

Aerobic respiration and anaerobic sulfate reduction are usually considered the 
most important C oxidation pathways in mangrove sediments, with a typical share 
of 30–50% each (e.g. Alongi et al. 2000a; Kristensen et al. 2011). Other metabolic 
pathways such as denitrification, Mn, and Fe respiration have traditionally been 
considered unimportant for the C cycling of old-growth forests due to limited avail-
ability of the electron acceptors NO3

−, Mn(IV), and Fe(III) (e.g., Rivera-Monroy 
and Twilley 1996; Alongi et al. 2000a; Kristensen et al. 2000). Yet, recent evidence 
suggests that the role of Fe respiration may be comparable to or higher than that of 
sulfate reduction in Fe-rich mangrove sediments (Fig. 6.4; Kristensen et al. 2000; 
Kristensen and Alongi 2006; Kristensen et al. 2011). A critical consideration when 
assessing the relative role of microbial Fe reduction is related to how this process is 
measured. Most studies use anaerobic sediment incubations to provide reliable 
measures of solid-phase Fe reduction (Kristensen and Alongi 2006). However, some 
studies have only included dissolved Fe2+ accumulation (e.g. Alongi et al. 2000a), 
which greatly underestimates actual rates of Fe reduction. The drawback of this 
approach is that most Fe2+ produced from Fe reduction will rapidly precipitate with 
sulfide, carbonates, and phosphates or be chelated into sheet silicates and organic 
matrices (Thamdrup 2000). Instead, it is recommended that reactive solid phase 
Fe(III) and Fe(II) are extracted over time with a sufficiently strong extractant (e.g., 
0.5 M HCl, Lovley and Phillips 1987). Using this method, the decrease in extracted 
Fe(III) and corresponding increase in extracted Fe(II) provide a reliable measure of 
Fe reduction (e.g., Kristensen and Alongi 2006). This approach to measure Fe 
reduction has been applied in some mangrove settings (Table 6.4) and other coastal 
sediments (e.g., saltmarshes, Kostka et al. 2002; Gribsholt et al. 2003).

The rates of microbial C oxidation and partitioning of electron acceptors within 
mangrove sediments are also dependent on other factors. These include forest age, 
species diversity, forest density, root physiological activity, extent of water logging 
and flooding duration, and the intensity of faunal burrowing activities. For example, 
sulfate reduction accounts for less of the total sediment respiration in young (i.e., 
20–30%) than old (i.e., >50%) Avicennia marina and Rhizophora apiculata forests 
(Alongi et al. 1998, 2000b). Similarly, aerobic respiration usually dominates in per-
meable sandy sediments under young Rhizophora stands characterized by low plant 
biomass and high exposure to tidal forcing. Conversely, in older forests where iron 
reduction and sulfate reduction are the dominant respiration processes, most of the 
oxygen uptake is driven by oxidation of reduced metabolites (e.g., HS− and Fe2+) 
diffusing from deeper sediment layers (Canfield et al. 2005; Kristensen et al. 2011). 
Furthermore, the impact of water logging is evident in regions with distinct dry and 

6  Biogeochemical Cycles: Global Approaches and Perspectives
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wet seasons. When the water table is low during the dry season, oxygen penetrates 
deep into the sediment through gas-filled crab burrows and cracks, which enhances 
the oxidizing effect and promotes oxidation of organic C via denitrification and Fe 
reduction. In contrast, prolonged flooding during the rainy season prevents transport 
of oxygen into the sediment and sulfate reduction becomes the dominant pathway 
(Clark et al. 1998; Marchand et al. 2004).

The least energy-yielding step in the sedimentary metabolic pathway of all 
aquatic environments is methanogenesis. This process is controlled by the organic 
content of the sediment, oxygen concentrations, temperature, rainfall, substrate 
acidity, and the presence of inhibitors like sulfide (Livesley and Andrusiak 2012; 
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Dutta et al. 2013; Konnerup et al. 2014). The formation of CH4 usually occurs deep 
in sediments where sulfate supplies are exhausted. Methanogenesis has traditionally 
been considered negligible in mangrove sediments due to the competitive dominance 
of sulfate reduction (Livesley and Andrusiak 2012; Nóbrega et al. 2016). Yet, recent 
discoveries of high numbers of active methanogenic archaea in mangrove sediments 
have challenged this opinion (Lyimo et al. 2002, 2009). For example, Marinho et al. 
(2012) found four to five times higher methanogenesis in sediment vegetated by 
Rhizophora mangle than in adjacent seagrass beds and unvegetated subtidal marine 
sediments. In addition, it was demonstrated that otherwise competitive sulfate-
reducing and methanogenic bacteria can coexist in mangrove sediments with ample 
organic matter supplies (Lyimo et al. 2009; Otero et al. 2014; Chauhan et al. 2015). 
High rates of methanogenesis can also occur in mangrove environments influenced 
by freshwater (e.g., rivers, groundwater and precipitation) when sulfate reduction is 
hampered due to sulfate dilution (Lu et al. 1999; Maher et al. 2015).

6.3.2  �The Importance of Nitrogen and Phosphorus Nutrients

Nitrogen (N) and phosphorus (P) are critical nutrients that regulate the magnitude 
and spatial distribution of mangrove forest productivity and structural properties 
(Lovelock et al. 2009; Feller et al. 2010; Reef et al. 2010; Dangremond and Feller 
2014). Although N transformations are generally slow in mangrove wetlands, the 
actual rates vary among mangrove ecotypes and depend strongly on local (e.g., 
nutrient gradients, salinity), regional (e.g., geomorphology), and anthropogenic 
impacts (Alongi 2009; Kristensen et al. 2000; Keuskamp et al. 2015). Generation of 
newly available N by N-fixation (N2 → NH3) and loss of available N through deni-
trification (NO3

− → N2) occur, but to a much lower extent than in other estuarine 
environments (Twilley and Rivera-Monroy 2009). Given the low and almost similar 
rates of denitrification and N-fixation (Table 6.5), recycling through mineralization 
is probably the source of most inorganic N for primary producers in mangrove for-
ests (Feller et al. 2003; Alongi 2011), except when there are significant anthropo-
genic sources. In fact, eutrophication (effluents from, e.g., aquaculture and human 
developments) has in recent years significantly changed the nutrient balance and 
thus impacted biogeochemical cycles and productivity of many mangrove environ-
ments (Alongi 2009).

Denitrification in mangrove sediments is primarily controlled by the supply of 
the electron acceptor nitrate (NO3

−) and electron donors in the form of labile organic 
matter, and a number of secondary factors including the presence of macrofauna, 
macrophytes, benthic microalgae, H2S, and FeS as mentioned earlier (Sect. 6.3.1). 
Although the C and N cycles in this way are coupled in mangrove wetlands, NO3

− 
removal via denitrification can limit the production of organic matter (Rivera-
Monroy et  al. 2010). This may under certain conditions be counteracted by 
dissimilatory nitrate reduction to ammonium (DNRA) that effectively conserves 
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and recirculates N.  Thus, the occurrence of DNRA in mangrove forests has 
important implications for maintaining N levels and sustaining primary productiv-
ity (Fernandes et al. 2012a). However, only few studies have measured DNRA in 
mangrove wetlands, and it is not yet clear how this pathway contributes to the over-
all N budgets (Giblin et al. 2013; Molnar et al. 2013). Also, the anaerobic conver-
sion of NO2

− and NH4
+ to N2 (anammox), which in conjunction with denitrification 

represent a sink of N, requires further study. Estimates of anammox in mangrove 

Table 6.5  Mangrove sediment nitrogen fixation and denitrification at sites from the IWP and the 
AEP

Region Site
Mangrove 
type Vegetation

N fixation Denitrification
Refμmol m−2 h−1 μmol m−2 h−1

IWP Makham 
Bay 
(Thailand)

Mid-
intertidal

Rhizophora 
apiculata

12 2 1

Sawi Bay 
(Thailand)

Managed 
mid- and 
high-
intertidal

Avicennia 
alba
Ceriops 
decandra
Rhizophora 
apiculata

0–24 0–160 2

Mekong 
Delta 
(Vietnam)

Managed 
high-
intertidal

Rhizophora 
apiculata

10–59 0–92 3

Matang 
Reserve 
(Malaysia)

Managed 
mid-
intertidal

Avicennia 
marina
Rhizophora 
apiculate

0–125 16–458 4

Jiulongjiang 
Estuary 
(China)

Managed 
low-, 
mid- and 
high-
intertidal

Kandelia 
candel

0–2 46–158 5

AEP Joyuda 
Lagoon 
(Puerto 
Rico)

Fringe No specified 13–31 1–161 6

Oyster Bay 
(Jamaica)

Fringe 
center, rear

Avicennia 
germinans
Rhizophora 
mangle

0–100 0–83 7

Twin Cays 
(Belize)

Fringe 
transition, 
dwarf

Avicennia 
germinans
Laguncularia 
racemosa
Rhizophora 
mangle

0–17 0–8 8

1) Kristensen et al. (1998); 2) Alongi et al. (2002); 3) Alongi et al. (2000b); 4) Alongi et al. (2004); 
5) Alongi et al. (2005a); 6) Morell and Corredor (1993); 7) Nedwell et al. (1994); 8) Lee and Joye 
(2006)
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sediments are scarce (Li and Gu 2013; Wang et  al. 2013), but two experimental 
studies have revealed rates that account for <10% of total N2 production (Meyer 
et al. 2005; Fernandes et al. 2012b). Work in other coastal ecosystems suggests that 
denitrification is also much higher than anammox, particularly in sediments receiv-
ing a high load of reactive organic matter (Dalsgaard et al. 2005; Fernandes et al. 
2012b).

P availability within mangrove wetlands is, in contrast to N, strongly dependent 
on the dynamic interactions of P with Fe and S cycling (Nóbrega et  al. 2014; 
Deborde et  al. 2015). For example, phosphate (PO4

3−) is readily adsorbed and 
retained by Fe(III) oxyhydroxides in near-surface sediments, around crab burrows 
and around rhizospheres, thus limiting plant production (Clark et al. 1998). However, 
the adsorbed PO4

3− can be released back to dissolved form and be available again 
for primary producers when Fe(III) oxyhydroxides are reduced in anoxic sediment. 
This oxidation–reduction cycle depends on either transport of particles between 
oxic and anoxic zones or is due to temporal expansion and contraction of oxic 
zones. Crabs typically mediate the former mechanism when they rework surface 
and subsurface sediments, whereas the latter mechanism is primarily due to tidal 
and seasonal changes in redox conditions.

The use of fertilization experiments under field conditions has advanced our 
understanding of the complex interaction and relative role of N and P availability for 
mangrove structural development and productivity (Lovelock et  al. 2006; Feller 
et al. 2007; Simpson et al. 2013). The response of ecological processes to nutrient 
enrichment depends on site characteristics, species composition and dominance, 
and the nature of nutrient limitation (Feller et al. 2010; Reef et al. 2010). For exam-
ple, the resorption of P from senescent tissue by R. mangle is under P-limited condi-
tions much higher (≈70%) than that for N (≈45%). N fertilization does not change 
this pattern, but P fertilization decreases P resorption (<50%), whereas N resorption 
(≈70%) increases (Feller et al. 1999). Scrub mangrove forests (e.g., R. mangle and 
A. germinans) growing in P limited carbonate sediments always respond to P fertil-
ization, while surrounding fringing mangroves (e.g., R. mangle) respond mostly to 
N fertilization, and those exposed to intermediate tidal influence respond to both N 
and P fertilization (Lovelock et  al. 2006) as hydroperiod interacts with nutrient 
availability (Twilley and Rivera-Monroy 2009). The response of mangrove wet-
lands to nutrient additions appears to be similar in both the IWP and AEP biogeo-
graphical region. Large-scale experimental work on N and P limitation was initially 
performed in the Caribbean region (Belize), Central America (Panama), and North 
America (Florida), but has been expanded to areas in Australia and New Zealand, 
particularly when assessing effects of nutrient availability on C sequestration 
(Alongi 2011). For example, large-scale comparisons (Caribbean, Australia, New 
Zealand) revealed that P is less limiting to plant metabolism at higher than lower 
latitudes (Lovelock et al. 2007). Although this and other large-scale latitudinal com-
parisons to evaluate differences in N and P responses between the IWP and AEP 
have been undertaken, there are still large gaps in the overall conceptual framework 
for mangrove wetlands.
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Table 6.6  Burrow and disturbance depths by various invertebrate and vertebrate taxa in mangrove 
environments from different geographical regions

Geographical 
region Taxon (genus)

Burrow/Disturbance
Densitya (m−2) RefDepth (cm)

Indo-west-Pacific

Crab
 � Mictyris ~10–30 226 1–2
 � Uca ~10–100 ~100 3–4
 � Ocypode ~16–40 ~1 5–6
 � Sesarma ~100–120 ~12 7
 � Helice ~35 36 8
 � Neoepisesarma ~80 0.2 9–10
 � Chiromantes ~10 18 11–12
Amphipod
 � Victoriopisa ~10 3500 13
Callianassid, penaeid, 
alpheid shrimp
 � Trypaea ~120 200 14
 � Metapenaeus  ~1 15–16
 � Alpheus ~50 56 17
Thalassinid lobster
 � Thalassina ~250 0.5 18
Sipunculid worm
 � Siphonosoma ~50 19
Bivalve
 � Geloina  Upper sediment 40b 20
Teleost fish
 � Periophthalmus >10 21
Elasmobranch fish 
(Ray)
 � Himantura  ~5 22

Atlantic-east-Pacific

Crab
 � Uca ~40 ~70 23c

 � Ucides ~200 ~3 24
 � Ocypode ~0.7 25

42–43
Penaeid shrimp
 � Penaeus  ~5 26
Thalassinid lobster
 � Thalassina ~250 0.5 27c

Sipunculid worm
 � Sipunculus Upper sediment ~240 28
Bivalve
 � Mytella  Upper sediment >20b 29

(continued)
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6.3.3  �The Impact of Benthic Fauna

A broad diversity of benthic animals lives or feeds in and on mangrove sediments. 
Most of these are invertebrates, including crustaceans, polychaetes, sipunculids, 
and molluscs, whereas teleost fish and rays may be present occasionally (Table 6.6). 
Brachyuran crabs are particularly dominant because their hard and compact cara-
pace provides good locomotion ability and protection in the harsh mangrove envi-
ronment, offering evolutionary advantage over other invertebrates (Krobicki and 
Zatoń 2008). However, the diversity of brachyuran crabs associated with man-
groves varies considerably; from over a hundred species in Southeast Asia to only 
a few dozen species in East African and the Americas (Gillikin and Schubart 2004; 
Lee 2008). Nevertheless, crabs (especially Grapsoidea and Ocypodoidea) usually 
dominate both in numbers and biomass in mangrove ecosystems all over the world 
(Jones 1984).

As expected from their prominent distribution and occurrence, these decapods 
are key species for regulating and controlling mangrove ecological and biogeo-
chemical functioning. Crabs are known to reduce leaf litter export to adjacent open 
waters by burial and consumption of leaves (Table 6.7). Litter handled by crabs 
eventually enters the microbial food chain either in the form of uneaten remains and 

Table 6.6  (continued)

Geographical 
region Taxon (genus)

Burrow/Disturbance
Densitya (m−2) RefDepth (cm)

Teleost fish
 � Lutjanus  Upper sediment 30
Elasmobranch fish 
(Ray)
 � Dasyatis ~20 ~0.6 31

[1] Rossi and Chapman (2003); [2] Shih (1995); [3] Gillikin (2000); [4] Qureshi and Saher (2012); 
[5] Chan et al. (2006); [6] Dubey et al. (2013); [7] Stieglitz et al. (2000); [8] Mchenga et al. (2007); 
[9] Thongtham and Kristensen (2005); [10] Kristensen (2008); [11] Gillikin and Kamanu (2005); 
[12] Xiong et al. 2010); [13] Dunn et al. (2009); [14] Kerr (2001); [15] Joshi et al. (1979); [16] 
Primavera and Lebata (1995); [17] Dworshak and Pervesler (2002); [18] Kartika and Patria (2012); 
[19] Zhou and Li (1990); [20] Morton (1976); [21] Clayton and Snowden (2000); [22] O’Shea 
et al. (2012); [23] Kristensen (2008); [24] Pülmanns et al. (2014); [25] da Silva Castiglioni and 
Negreiros-Fransozo (2005); [26] Fuss (1964); [27] Dworshak et al. (2012); [28] Rice et al. (1995); 
[29] Bacon (1975); [30] Vasleta et al. (2012); [31] Cross and Curran (2000)
aExample density of burrow/disturbance
bRepresents individuals in lieu of burrow density. Upper sediments represent bioturbation pre-
dominantly in shallow surface sediments with no documented depth (cm) from literature
cIncludes references therein
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fecal material buried in the sediment or as crab carcasses (Giddins et  al. 1986; 
Robertson 1986; Lee 1997, Twilley et al. 1997) and therefore contributes to nutrient 
recycling within mangrove forests (Nordhaus et  al. 2006). Maceration of plant 
material during ingestion and contact with digestive enzymes in the gut appears to 
facilitate microbial attack on insoluble carbohydrates. The rate of microbial decay 
of recalcitrant leaf litter in sediments is therefore facilitated after passage through 
crab guts (Kristensen and Pilgaard 2001). In contrast, the intact plant material that 
escapes crab handling is readily exported by tides and thus lost from the mangrove 
ecosystem.

A striking performance of bioturbating animals in mangrove ecosystems is the 
formation of deep and branched burrows and reworking of sediment particles. The 
animals involved are primarily crabs, but other crustaceans (amphipods, alpheid 
shrimp, and thalassinid lobsters) and sipunculids also form burrows, whereas myti-
lid bivalves and fish produce less structured disturbances of surface sediments 
(Table 6.6). Although the diversity of bioturbating animals in general is greater in 
IWP than AEP mangrove forests, the functional types of bioturbation are similar, as 
are the typical densities of burrows (Table 6.6).

As mentioned in Sect. 6.3.3., bioturbation by crabs has a profound effect on 
mangrove sediments by constantly disrupting the vertical redox zonation and 
increasing the complexity of the sediment system (Kristensen 2008). Functionally, 
bioturbation regulates and controls biogeochemical processes such as organic C 
oxidation and benthic nutrient fluxes (Table 6.8). Sesarmid and ocypodid crabs are 
the most prominent taxa affecting biogeochemical transformations in mangrove 

Table 6.7  Examples from around the world of removal (litter taken into burrows) and consumption 
of leaf litter by leaf-eating mangrove crabs

Species Site
Rate of consumption or removal 
(% of total litter fall) Ref

Sesarmid crabs North Queensland, 
Australia.
High intertidal

Removal:
C. tagal forest: 71%,
B. exaristata forest: 79%,
A. marina forest: 33%

1

Neoepisesarma 
versicolor

Bangrong, Phuket,
Thailand
Mid intertidal

R. apiculata forest:
Removal: 87%
Consumption: 65%

2

Sesarma meinerti Mgazana river estuary
South Africa
High intertidal

Consumption:
A. marina forest: 44%

3

Sesarma meinerti South Africa. High 
intertidal

Bruguiera gymnorrhiza forest
Removal: 99%;
Consumption: 64%

4

Ucides cordatus Pará, North Brazil. High 
intertidal

Consumption: R. mangle forest: 
81%

5

(1) Robertson and Daniel (1989); (2) Thongtham et al. (2008); (3) Emmerson and McGwynne 
(1992); (4) Steinke et al. (1993); (5) Nordhaus et al. (2006)
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ecosystems. Regardless of the species involved and its behavior, bioturbation con-
siderably enhances the transport of O2 and other electron acceptors to deeper sedi-
ment layers and promotes the upward translocation of metabolites (e.g. CO2) and 
reduced compounds (i.e. iron sulfides)(Fig. 6.5). Several studies have demonstrated 
effects of bioturbation on various sediment parameters, including microphytoben-
thic chlorophyll, C turnover, nutrient (N, P) cycling, and S distribution (Kristensen 
and Alongi 2006; Bartoli et  al. 2009). Some biogeochemical processes are 
consistently increased or decreased among animal taxa, whereas the impact of oth-
ers are more genus or species specific, i.e., by shifting the dominance of sulfate 
reduction to other respiration pathways or vice versa (Alongi et al. 2001; Kristensen 
2008). The capacity to promote such biogeochemical shifts depends on crab behav-
ior, such as burrowing and refuge strategies, as well as feeding and mating behavior 
(Kristensen 2008).

Fig. 6.5  Field exclusion experiment in mangrove forests of NE Brazil. The contribution of oxi-
dized Fe, pyrite Fe, and the degree of iron pyritization (DOP) in different depth layers (mean ± SD) 
of sediment taken from plots with and without Ucides cordatus is shown. Bars with different letters 
indicate significant differences at p < 0.05 (Modified from Araújo et al. 2012)
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Because C accumulation is a key process (and an important Ecosystem Service) 
in mangrove wetlands, O2 translocation into deeper layers of the sediment by bio-
turbation can enhance organic C degradation processes and consequently increase 
CO2 emissions to the atmosphere (see Sect. 6.4). Thus, crabs are not only capable of 
retaining C within mangrove ecosystems through burrowing and mixing of sedi-
ment particles, but are also important actors in the opposite process of exporting C 
by favoring more efficient decomposition pathways and thus boosting CO2 emis-
sions (Pülmanns et al. 2014). This is evident in Tanzanian mangrove forests where 
crab burrows are responsible for 36–62% of the total CO2 emission from the sedi-
ments (Kristensen et al. 2008b).

6.3.4  �The Importance of Hydroperiod and Hydrology

Hydrology is recognized by the hydroperiod, which is defined as the depth, duration, 
and frequency of inundation (Fig. 6.6) (Reddy and Delaune 2008; Twilley and Rivera-
Monroy 2009). Mangrove wetland hydroperiod encompasses all aspects of water bud-
gets (rainfall, evaporation, as well as subsurface and surface flow) regardless of the 
water source (Mazda and Wolanski 2009). In combination with resources (e.g., N, P, 
light, space) (Tilman 1982) and regulators (e.g., salinity, sulfide, pH, Eh), gradients in 
hydroperiod control mangrove structural and functional properties (Ellison and 
Farnsworth 1997; Twilley 1997; Twilley and Rivera-Monroy 2005; Berger et  al. 
2008). One of the major causes of mangrove mortality and loss at the global scale is 
the direct and indirect impact of human activities on hydrology, which is perhaps 
“[…] the single most important determinant of the establishment and maintenance of 
specific types of wetlands and wetlands processes” (Mitsch and Gosselink 2015). As 
hydroperiod controls plant growth, it also has a significant role for the availability and 
concentration of essential elements in mangrove sediments (Twilley and Day 2013; 
Mitsch and Gosselink 2015). Indeed, studies assessing the impact of hydroperiod 
include how mangrove species zonation (e.g., Crase et al. 2013), development of sedi-
ment physicochemical gradients (i.e., sediment and water quality) (Alongi 2009), and 
physiological traits of mangrove species (e.g., growth rate, photosynthesis perfor-
mance, nutrient use efficiency, biomass allocation) and regulator gradients (i.e., salin-
ity) respond to changes in flooding frequency and duration.

As mentioned earlier, there is uncertainty in the magnitude and spatio-temporal 
variability of biogeochemical transformations in mangrove forests, which in certain 
cases can be associated with the lack of data on hydrologic parameters (Mazda and 
Wolanski 2009). For example, mangrove studies assessing the impact of flooding on 
biogeochemical transformations use water level recorders positioned along tidal 
creeks at some distance (km) from the study site, whereas other studies rely on data 
from hydrographic stations installed in nearby ports and coastal cities. Hydrographs 
or tide tables based on astronomical calculations are then combined with elevation 
measurements in single points or along transects to produce inundation frequen-
cies (e.g., Mendoza et al. 2012). Few studies have actually deployed water level 
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Fig. 6.6  Water level, flooding duration, and frequency of inundation in fringe and scrub mangrove 
zones of the San Bernardo Estuary, Gulf of Fonseca, Honduras. The zero mark in the upper panel 
is relative to the ground surface in this site (Modified from Castañeda-Moya et al. 2006)
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recorders inside the forest to register long-term flooding frequency and depth of 
inundation. In fact, modeling of hydrological patterns in estuaries and inside man-
grove areas shows distinct differences in tidal patterns and symmetry due to creek 
geomorphology, local weather, and forest structure (riverine, basin, fringe) (see 
Chap. 11) (Lugo and Snedaker 1978; Mazda et al. 1995), reinforcing the need to 
directly measured spatial and temporal variation of hydroperiod parameters at both 
local and regional scales.

Duration of inundation is critical because it directly controls sediment redox 
conditions, and thus microbial transformations and exchange processes within the 
sediment, whereas inundation depth determines the net material exchange (e.g. 
organic matter and nutrients) between mangrove forests and adjacent coastal waters 
(Twilley and Rivera-Monroy 2005; Adame and Lovelock 2011). The direct effect of 
hydroperiod on O2 diffusion into mangrove substrata is well documented (e.g., 
Kristensen 2008; Twilley and Rivera-Monroy 2009), but there is still a lack of 
knowledge directly linking frequency and duration of inundation to biogeochemical 
transformations such as denitrification, iron reduction, sulfate reduction, and metha-
nogenesis, or even CO2 and CH4 fluxes at sediment–air and sediment–water inter-
faces. These measurements are necessary to evaluate the uncertainty and applicability 
of fluxes using sediment under laboratory conditions to extrapolate values to larger 
scales (see Chap. 11).

Among the variables directly measured along with hydroperiod under experi-
mental and field conditions is salinity of overlying water and sediment porewater. 
Salinity is an excellent proxy of physicochemical status because it integrates a num-
ber of factors controlling hydrology and biogeochemistry in coastal regions; from 
tidal inundation, evapotranspiration, and river discharge to partitioning between 
iron reduction, sulfate reduction, and methanogenesis in sediments. Salinity is an 
easy parameter to measure in hydrological studies as reflected by the number of 
studies relating hydroperiod and salinity patterns in mangrove zonation studies. For 
example, Crase et al. (2013) showed that the spatial partition of three mangrove spe-
cies (Sonneratia alba, Rhizophora stylosa, Ceriops tagal) in northern Australia is 
significantly associated to hydroperiod and porewater salinity. Similarly, Castaneda-
Moya et al. (2006) found clear distinctions in the spatial distribution of mangrove 
ecotypes (fringe vs scrub forests) and species (Rhizophora mangle and Avicennia 
germinans) as a result of the interaction between hydroperiod and salinity (Fig. 6.7). 
In general, porewater salinity is lower in the fringe zone dominated by Rhizophora 
spp. (<40) than in transition (60) and particularly scrub (>70) mangrove zones dom-
inated by Avicennia spp. (Castaneda-Moya et al. 2006).

Although analysis of mangrove hydrology has improved (Mazda and Wolanski 
2009), there is still a need to identify the mechanisms by which hydroperiod con-
trols sediment biogeochemistry within different mangrove ecotypes (e.g., riverine, 
fringe, basin) (Lugo and Snedaker 1978; Woodroffe 1992, 2002). In situ and experi-
mental work is needed to assess how horizontal and vertical hydrodynamics, modi-
fied by forest tree density or root structure (Mazda et al. 1995, 2005), enhances or 
limits the relative role of mangroves wetlands as sinks, sources, and/or transformers 
of biologically important elements (C, N, P, S) in coastal regions with different 
ecogeomorphic characteristics (Woodroffe 2002).
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6.4  �Greenhouse Gas (GHG) Balance of Mangrove 
Ecosystems

Mangrove wetlands have a potentially high impact on the global C budget because 
of their high net productivity (218 ± 72 Tg C y−1, Bouillon et al. 2008) and C storage 
capacity (18–29 Tg C y−1, Alongi 2012), despite their simple forest structure, low 
biodiversity, and limited areal cover (less than 150,000 km2 worldwide) (Polidoro 
et al. 2010; Giri et al. 2011). This means that an equivalent of as much as ~10% of 
the organic C produced in mangrove wetlands escapes export to coastal waters by 
tidal flushing and pumping, or release to the atmosphere in the form of CO2. The 
waterlogged and anoxic mangrove sediments with slow decomposition, therefore, 
allow a substantial long-term organic C accumulation (Fig. 6.8), and thus function 
as sinks for atmospheric CO2 (Donato et  al. 2011; Murdiyarso et  al. 2015). 
Accordingly, CO2 releases at the sediment–air interface in mangrove wetlands are 
lower than those measured in both temperate and tropical terrestrial environments 
(Leopold et al. 2015). This is not only true for CO2 emissions, but also for other 
GHG such as methane (CH4) and nitrous oxide (N2O). However, recent studies 
report a high variability of GHG emission from mangrove areas depending on their 
productivity, position in the tidal range, anthropogenic impact and seasons (Livesley 
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Fig. 6.7  The impact of sediment porewater salinity and relative elevation on the spatial distribu-
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and Andrusiak 2012; Leopold et al. 2013; Chen et al. 2014; Nóbrega et al. 2016). 
Thus, it seems, from the studies to date, that particularly mangrove eutrophication 
caused by discharge of untreated wastewater can substantially enhance GHG pro-
duction (Fig. 6.8) (Konnerup et al. 2014).

Bouillon et al. (2008) pointed out that the current uncertainty of published man-
grove C budgets at the global scale were largely due to lack of reliable sediment-air 
and water-air CO2 flux measurements. Several studies have subsequently provided 
new information about key drivers influencing CO2 emission at the sediment-air 
interface (Kristensen et al. 2008b; Chen et al. 2014; Lovelock et al. 2014; Leopold 
et al. 2015). These studies clearly demonstrate the importance of features such as C 
stocks, sediment water content, temperature, and crab burrows/pneumatophores 
density as regulators of CO2 emission from mangrove sediments (Fig. 6.8). Thus, 
Lovelock et al. (2014) observed a direct relationship between sediment respiration 
and aboveground net primary production (a proxy of C accumulation). The role of 
sediment water content for CO2 emission is related to the impact of water on trans-
port processes and decomposition efficiency within the sediment. Molecular diffu-
sion is faster in gas than water, and CO2 fluxes may increase when sediments become 
partly dry during air exposure (see Sect. 6.3.1), while organic matter mineralization 
is slow in waterlogged sediment due to the dominance of anaerobic processes 
(Kristensen et al. 2008a). Consequently, sediment-air CO2 emissions may decrease 
under low redox, as observed by the wet conditions during the monsoon season in 
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India (Chanda et al. 2013). Conversely, CO2 emission also changes with tempera-
ture due to thermal sensitivity of microbial processes. Studies assessing the tem-
perature dependence of CO2 emission from mangrove sediments reported Q10 values 
between 2 and 3, which are comparable to other forested ecosystems (Lovelock 
2008; Leopold et al. 2015) and marine sediments (Thamdrup et al. 1998). In addi-
tion, Leopold et al. (2015) showed that temperature was the main driving factor for 
seasonal variations of sediment-air CO2 emissions in Rhizophora and Avicennia 
dominated stands in a semi-arid climate. They also suggest that the surface biofilm 
at sediment surfaces may limit CO2 efflux towards the atmosphere by forming a 
protective barrier consisting of extracellular polymeric substances (EPS) and due to 
microbial assimilation (Fig.  6.8). As mentioned earlier, crab burrows and aerial 
roots (e.g., pneumatophores) act as efficient conduits that allow the ascent of excess 
deep CO2 to the atmosphere (Kristensen et al. 2008b; Troxler et al. 2015). However, 
due to lack of comparable studies and data on how sediment-air CO2 fluxes are 
controlled in various mangrove forest ecotypes, it is presently not possible to per-
form a thorough analysis of CO2 emissions among biogeographical regions.

CO2 release measured across the sediment-water/air interfaces does not represent 
the total mineralization of organic matter derived from mangrove forests. Part of 
their net production (e.g. litter) is exported into tidal creeks and the adjacent estua-
rine and coastal waters through tidal-driven export of particulate materials 
(Jennerjahn and Ittekkot 2002; Alongi 2014) and dissolved organic C from porewa-
ter seepage (Fig. 6.9) (Bouillon et al. 2007; Kristensen et al. 2008a, Maher et al. 
2013; Stieglitz et al. 2013). These organic materials may be quickly mineralized in 
the water column and the generated CO2 emitted to the atmosphere (Bouillon et al. 
2003). As a result, waters surrounding mangrove forests are usually oversaturated in 
CO2 (Kone and Borges 2008). This source of CO2 in tidal creek and estuarine open 
waters must be considered when assessing C budgets in mangrove ecosystems. 
Further work is urgently needed to directly measure CO2 emissions from mangrove 
waters to the atmosphere, including their seasonal variability from the upper water-
sheds to the coastal zone (Fig. 6.9).

The largest CO2 exchange between mangrove forests and the atmosphere is 
through canopy uptake and release. This exchange has traditionally been derived by 
extrapolating leaf metabolism measurements and leaf-area index (LAI) data (Alongi 
2009). However, the recent implementation of the eddy-covariance (EC) technique 
in mangrove forests has improved our understanding of the gas exchange between 
forest canopies and the atmosphere (Fig. 6.9) (Barr et al. 2010, Rivera-Monroy et al. 
2013). For example, Barr et al. (2010) used the EC technique in a subtropical region 
of the AEP to evaluate the seasonality in riverine mangrove forest CO2 assimilation. 
They showed that assimilation was highest during the winter dry season due to an 
increase in diffuse solar irradiance to the forest canopy. Furthermore, net ecosystem 
exchange (NEE) decreased during low tide under both night and daylight condi-
tions. More recently, Troxler et al. (2015) integrated all components of CO2 fluxes 
at the same location to the whole forest scale, and found a larger than expected 
contribution of the below-canopy respiration components to total forest ecosystem 
respiration (ER). This underscores the need to improve our understanding of 
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below-canopy CO2 fluxes to elucidate how mangrove C cycling respond to various 
disturbance events (e.g., hurricanes) and long-term changes (e.g., climate change 
and sea-level rise). Thus, global mangrove forest C budgets must include both can-
opy and below-canopy ER at larger geographical scales to fully clarify the role of 
these forests in mitigating climate change (Rivera-Monroy et al. 2013; Giri et al. 
2011).

Methane (CH4) emissions from mangrove sediments are usually undetectable 
(Alongi et al. 2000a; Kreuzwieser et al. 2003) or very low (<1% of the total CO2 
emissions; Kristensen et al. 2008b; Nóbrega et al. 2016), mainly because it is oxi-
dized by methanotrophs before reaching the sediment surface (Canfield et al. 2005). 
Actual methanogenesis within mangrove sediments can be orders of magnitude 
higher than fluxes measured at the sediment surface (Sotomayor et al. 1994; Giani 
et al. 1996; Lyimo et al. 2002). Significant CH4 emissions from mangrove sediments 
will therefore only occur when environmental conditions (e.g., sediment exposure 
during low tide) allow rapid transport to the atmosphere. As mentioned earlier in the 
case of CO2 flux, crab burrows and aerial roots (e.g. pneumatophores) can also act 
as efficient conduits for CH4 emissions. Furthermore, porewater seepage from creek 
banks during low tide generate a discharge of porewater supersaturated in CH4, 
potentially becoming a source to the atmosphere (Call et al. 2015). Eutrophication 
can also enhance CH4 emission as result of large labile OM inputs that increase 
sediment metabolic activity, leading to near-surface depletion of sulfate and a shift 
to methanogenesis (Sotomayor et al. 1994; Purvaja and Ramesh 2001).

Fig. 6.9  Carbon fluxes identified as the main drivers for net ecosystem C balance (NECB) (solid 
black arrows) and net ecosystem CO2 exchange (NEE) obtained with the eddy covariance method 
(open arrows). The dotted box represents the mangrove forest exchanging C with coastal waters 
and the atmosphere. The processes contributing to NECB are diffusive and advective exchange of 
CO2 (i.e., NEE), CH4, CO, volatile organic C (VOC) with the atmosphere (including soot emission 
during fires), lateral leaching and tidal exchange of dissolved organic C (DOC), dissolved inor-
ganic C (DIC), and particulate C (PC) in mangrove waters. The biological processes regulating net 
ecosystem production are gross primary production (GPP), autotroph respiration (AR), and hetero-
troph respiration (HR) (Modified from Chapin et al. 2006; Rivera-Monroy et al. 2013)
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Nitrous oxide (N2O) is a potent GHG with a high radiant forcing potential 
(Lashof and Ahuja 1990). This gas can be produced either by denitrification under 
anoxic conditions or by nitrification under oxic conditions (Canfield et al. 2005). 
Mangrove sediments are generally characterized by low levels of porewater NH4

+ 
and NO3

− (Alongi et al. 1998; Deborde et al. 2015), and are considered small N2O 
sources to the atmosphere (Chen et al. 2011; Livesley and Andrusiak 2012). N2O 
fluxes measured at the sediment-air interface in mangrove environments are closely 
controlled by oxygen availability, organic C content, tidal exchange, Fe and SO4

2− 
concentrations, and N availability. However, mangrove forests are areas of intense 
dissolved inorganic nitrogen (DIN) consumption since NH4

+ and NO3
− are assimi-

lated by plants as soon as they are produced (Alongi et al. 2002). Consequently, 
plant uptake strongly limits N2O emissions to the atmosphere, and high rates from 
mangrove sediments have only been reported under excessive anthropogenic DIN 
input (Konnerup et al. 2014; Chauhan et al. 2015).

6.5  �Ecosystem Services: Local and Global Perspectives

Mangrove wetlands provide a number of ecosystem services (ES) through their bio-
geochemical functions. Using the Millennium Ecosystem Assessment classification 
(Carpenter et al. 2006, 2009), these services include climate change mitigation, flood 
regulation and water purification (see Chap. 8). A monetary value has been proposed 
for other mangrove ES (e.g., raw material and food, coastal protection, erosion con-
trol, maintenance of fisheries, tourism/recreation), but there are no comprehensive 
economic estimates for functions linked to biogeochemical transformations (Barbier 
et al. 2011). A possible exception is the role of C sequestration for climate change 
mitigation as recent studies have provided C storage estimates in some IWP and AEP 
locations. A major reason for the lack of economic information is the nonmarket 
benefits and social values of these biogeochemical functions in contrast to the more 
straightforward estimates for services like fish and fish habitats (Alongi 2011; 
Barbier et al. 2011). Another key service provided by mangroves is the export of 
organic material and nutrients that drives foodwebs in adjacent habitats such as coral 
reefs and seagrass meadows and support fisheries (Bouillon and Connolly 2009). 
The monetary values of this service have not been rated, but quantification (e.g. 
Davis et al. 2014) and incorporation into more comprehensive assessments of the 
ecological value of mangrove export has been initiated (Sheaves et al. 2015).

Furthermore, there is a need to assign the potential role of mangrove forests and 
their biogeochemical functions as sinks, sources, and transformers of C, nutrients, 
and heavy metals correctly in relation to the nature and location of the original 
inputs. Because different mangrove types (fringe, basin, riverine) provide different 
ES (Ewel et al. 1998), it is critical to determine the precise functional role and ES 
capacity of each mangrove type. Yet, given the diverse range of mangrove ecogeo-
morphic settings, further information is needed about, for example, the range of 
nutrient loadings and removal efficiencies along complex hydrological gradients 
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(Rivera-Monroy et al. 1999). Currently, this information is lacking for a wide range 
of coastal environments, including mangrove forests in both IWP and AEP regions 
(Barbier et al. 2011).

Discussions about the optimal use of mangrove wetlands for wastewater treat-
ment have emerged regularly since the 1980s (Clough et al. 1983). However, there 
is lack of reliable field data to support the implementation of this management strat-
egy at appropriate spatial scales (i.e., hectares) (Robertson and Phillips 1995; 
Rivera-Monroy et al. 1999), particularly in areas strongly impacted by aquaculture 
and agriculture practices and urban development (Lee et  al. 2014). A potential 
opportunity to advance mangrove biogeochemical studies at local and regional 
scales is through climate-related and inspired restoration and rehabilitation projects 
coupled with C sequestration studies (Manez et al. 2014). Although the economic 
valuation of C sequestration in mangrove areas is still under discussion (Alongi 
2012; Hemati et al. 2015; Huxham et al. 2015), the local incentive for such efforts 
can be stimulated by including nutrient removal and sewage treatments in the long-
term estimates of the economic and social value of these presently nonmarket ES.

6.6  �Conclusions and Research Directions

Mangrove forests are ecotones between marine and terrestrial environments. These 
productive wetlands possess attributes of both environments, but also have intrinsic 
ecological mechanisms and processes that clearly differentiate them from their 
immediate surroundings, defined by distinct hydrological and elevation gradients. 
Because of their transitional position in coastal regions, mangrove forests around 
the world are increasingly vulnerable to anthropogenic impacts (i.e. deforestation 
and urban settlement), and associated environmental alterations (e.g. erosion and 
fluvial contamination and alteration of marine currents). Biogeochemistry research 
has focused on C, N, P, and mineral cycling in mangrove ecosystems, but most sur-
veys have been short-term (months or less) and lacking a comprehensive regional 
coverage to evaluate processes and transformations at the landscape level. Our cur-
rent understanding of the complex interactions between multiple factors and pro-
cesses that characterize mangrove biogeochemical transformations is limited and 
prevents extrapolation of information from one biogeographical region to another. 
More detailed studies must be performed at larger temporal (decadal) and spatial 
(watershed, regional) scales to characterize and compare environmental processes 
controlled by both natural and human disturbances.

Mangrove forests are particularly sensitive to rising sea level because of their 
direct hydrological interactions with coastal waters (Lovelock et  al. 2015). The 
Intergovernmental Panel on Climate Change predicts that the sea level rise for the 
years 2081–2100 relative to 1986–2005 will range from 40 to 60 cm (IPCC 2013). 
Detailed studies of the response of mangrove environments to changes in sea level 
are, therefore, urgently required. Research initiatives should include an interna-
tional network of permanent plots for long-term monitoring of biogeochemical pro-
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cesses, biodiversity, and plant structure among selected mangrove locations where 
mangrove distribution is rich and extensive in both the IWP and AEP regions. These 
proposed studies should include the establishment of eddy-covariance stations 
along biogeographical and anthropogenic gradients to improve our assessment of 
factors controlling mangrove net ecosystem productivity and GHG dynamics. Such 
EC systems will also facilitate our understanding of how recurrent natural distur-
bance (cyclones, tsunamis) and climate change, causing seasonal and interannual 
variability in precipitation, temperature, river discharge, will affect mangrove spa-
tial distribution, productivity, and CO2 exchange.

The interaction between mangrove forests and neighboring ecosystems with 
respect to exchange of materials and energy is another important aspect for consider-
ation in future studies. For example, inland zones at higher relative elevation adjacent 
to mangrove forests (e.g. hypersaline sandy flats) are considered potential refuges for 
mangrove expansion as response to sea level rise. Although mangrove ecosystems 
are legally protected against deforestation or land use conversions in many countries, 
those inland areas are not included in conservation plans and are consistently devel-
oped for human use. Given the increasing demand for space as human populations 
expand into the coastal zone at an increasing rate, sometimes triggered by a high 
demand of mangrove ES (e.g., fisheries, recreation), there is an urgent need to 
develop conservation alternatives tailored to local and regional needs. Managers and 
decision makers must acknowledge this problem now to avoid further mangrove 
“squeeze” effects in the future that may cause a dramatic loss of mangrove area.

A clear example of the need to understand how mangrove biogeochemical cycles 
interact with pressing management priorities is the use of mangrove wetlands as 
tertiary treatment of waste water (e.g., aquaculture, urban). To evaluate the conse-
quences of such disturbance, more knowledge is urgently needed about cascading 
effects of hydroperiod on sediment redox conditions and how this may alter, e.g., C, 
N,  P or S cycling. The current lack of understanding could result in destructive 
effects on both forest productivity and survival and even conversion of mangrove 
forests from functional C sinks to sources of GHG. The main issue is not if this type 
of management (tertiary treatment) is feasible and effective because this approach 
has been used in other temperate wetlands, but rather to ensure correct implementa-
tion of water and nutrient management practices (aquaculture, agriculture, urban) at 
adequate spatial scales in combination with an understanding of the critical biogeo-
chemical transformations.

We have undoubtedly advanced our understanding of the most critical biogeo-
chemical transformations controlling mangrove productivity during the last 
35 years, but the disproportion in the scope and quantity of mangrove biogeochemi-
cal studies across and within the IWP and AEP regions is troublesome. We advocate 
for collaboration and expansion of biogeochemical studies around the world. This is 
urgent because of the increasing rate of mangrove fragmentation and area loss at 
continental scales. The scientific community should soon translate current data and 
information about the complexity of mangrove biogeochemistry (i.e., supporting 
ES) into robust and applicable performance measures in management programs. It 
is our hope that such action may advance the conservation and protection of one of 
the most productive coastal ecosystems in the world.
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