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Abstract—Uses of underwater videos to assess diversity and
abundance of fish are being rapidly adopted by marine biologists.
Manual processing of videos for quantification by human analysts
is time and labour intensive. Automatic processing of videos can
be employed to achieve the objectives in a cost and time-efficient
way. The aim is to build an accurate and reliable fish detection
and recognition system, which is important for an autonomous
robotic platform. However, there are many challenges involved in
this task (e.g. complex background, deformation, low resolution
and light propagation). Recent advancement in the deep neural
network has led to the development of object detection and
recognition in real time scenarios. An end-to-end deep learning-
based architecture is introduced which outperformed the state of
the art methods and first of its kind on fish assessment task. A
Region Proposal Network (RPN) introduced by an object detector
termed as Faster R-CNN was combined with three classification
networks for detection and recognition of fish species obtained
from Remote Underwater Video Stations (RUVS). An accuracy
of 82.4% (mAP) obtained from the experiments are much higher
than previously proposed methods.

Index Terms—Deep Learning, CNN, Underwater Video, Object
Detection, Classification, Marine Ecosystem Analysis

I. INTRODUCTION

It is now common for marine scientists to assess fish
abundance using multiple underwater video cameras [1]. This
innovative method of assessing fish populations is a viable
alternative because it is inexpensive and non-lethal compared
to traditional methods (i.e. uses of seine nets, fyke nets,
gill nets, electrofishing, rotenone, and trawls) [2]. A Remote
Underwater Video Stations (RUVS)-based approach can also
work in complex habitats such as reefs or dense aquatic
vegetation where traditional approaches are ineffective. Videos
generated from RUVS are now mostly analyzed manually by
fish taxonomy experts. These experts estimate fish abundance
in different habitats to determine spatial patterns in fish
abundance and species composition for a variety of research
objectives. Information such as types of species and frequency
of occurrence of a particular species are most important in this
type of analysis.

However, manual analysis of large amounts of video pro-
duced by clusters of RUVS is a tedious process and as it
needs experts with specialized domain knowledge [3], the
process becomes expensive. Automatic processing of captured
underwater visual data from RUVS would be an ideal solution

in such circumstances. Automatic detection of fish and other
marine species is an essential step in order to distinguish the
fish from the background (e.g. ocean floor, plants, rocks).
This detection task is made more complex by the high levels
of occlusion (due to schooling by fish), color and texture
of fishes. Fig.1 shows some sample frames obtained from
different marine sites across southeast Queensland, Australia.

Existing works in the literature are mostly semi-automatic
[2], [4] and assumed a constrained environment. An uncon-
strained video stream involves more complex environments
and challenges like illumination, water turbidity, complex
background, a variable number of species, changes in orienta-
tion and scale due to freely moving fishes. These factors pose
a real challenge in recognition of species in an unconstrained
environment. In this work, we looked to fully automate the
process to obtain all the required information needed for an
assessment from a captured underwater video. Two main com-
ponents involved in this automation are (a) automatic detection
of species bounding boxes in the frame and (b) classification
of all the detected bounding boxes (Region of Interest) into
predefined classes (i.e. species names). The proposed work
addresses both challenges in a single pipeline using a deep
learning-based end-to-end architecture called ‘Faster R-CNN’.

The objective is to identify all the species present in an
underwater video in a real-time scenario. The proposed archi-
tecture for fish assessment has many advantages apart from
its fully automated properties. The system can successfully
detect and recognise multi-oriented and multi-scale samples of
species available in the dataset obtained from an unconstrained
environment. A wide range of experiments was conducted
using three different deep learning models and a dataset was
developed with a significant number of surf species.

II. RELATED WORKS

Despite significant literature for automatic object detection
and recognition using deep learning, limited attention has been
given to recognition of species from the underwater video
for assessing fish abundance. We provide a brief review of
the relevant research and state-of-the-art approaches on fish
identification from underwater video footages. The limitations
of the approaches in the literature are investigated to identify
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(a) (b)

(c) (d)
Fig. 1. Sample frames extracted from underwater videos obtained from different beaches across southeast Queensland, Australia. (a,b) Coolum Beach and
(c,d) Currimundi Beach

the gap and scope of works. Existing methods can be cate-
gorised into two classes: handcrafted feature-based [5], [6],
[4] and machine learning-based [1] approaches. A deformable
Template Matching-based feature extraction technique was
proposed by Rova et al. [5] for classification of fish. Support
Vector Machines (SVMs) with linear and polynomial kernel
were used to classify fishes in their work. Gundam et al. [6]
proposed a fish classification technique which could be used
as a partial automation of underwater video processing. A
Kalman filter-based technique was used. However, a constant
velocity model was assumed which is not very compatible
with the unpredictability of fish movements (velocity and
directions). The shape-based feature (Fourier) extraction tech-
nique was employed which might not perform well when the
number of classes increases and with fishes of identical shape.
Only three fish species were considered in the experiments
whereas many more fish classes can be presents in undersea
environments.

Spampinato et al. [4] proposed two different methods for
fish detection in underwater images and videos contain ten
different classes of fish. Three different approaches were pro-
posed for image-based fish species recognition based on spool-
ing and sparse coding-based features. A two-step approach was
adopted for fish detection and classification in videos. A back-
ground subtraction-based approach was used to detect fishes
whereas SIFT-descriptors and SVM-based classifier were used
for recognition. However, limitations of shape context-based
features and template matching techniques assume a constraint
environment which is not applicable to real-time unconstrained
underwater environment. Recently, the latest generation of
Convolutional Neural Networks (CNNs) outperformed the

approaches based on handcrafted approaches in computer
vision research [7]. The problem of fish classification was
addressed by Salman et al. [1] using a CNN-based feature
and SVM-based classifier. The LifeCLEF fish dataset used in
this experiment mainly contains fish templates.

Accurate object detection and classification still remain a
challenging problem in the field of computer vision despite
a significant progress being made using deep convolutional
neural networks on image classification and detection [8].
Recent advancement of deep ConvNets [9] has significantly
improved the object detection and classification task. The
object detection is a more challenging job, compared to
image classification, as it requires more advanced and complex
methods [10], [9] to obtain accuracy. However, convolutional
neural networks (CNNs) have now been successfully employed
recently [11], [12]. The selective search [11] method merges
superpixels based on low-level features and EdgeBoxes [12]
uses edge information to generate region proposals, and these
are now widely used. Shortcomings of proposed methods are
that they need as much running time as the detection network
to hypothesize object locations.

Here, the recent state-of-the-art methods towards object
detection [10], [13], [14] has been discussed. The Region-
based Convolution Network Network (R-CNN) [10] performs
excellent object detection by using a deep ConvNet and clas-
sify the object proposals. R-CNN uses Selective Search (SS)
technique to compute multi-scale object proposal to achieve
the scale-invariance capability. However, R-CNN is computa-
tionally expensive due to the processing of high numbers of
object proposal and provides only rough localization which
compromises speed and accuracy.
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Fast R-CNN [13] is an improved version of R-CNN with
a much faster training and testing process and it achieves
more accuracy compare to R-CNN. R-CNN does not share
computation and performs CovNet forward pass for each
object proposal. Spatial pyramid pooling nets [15] proposed
a sharing computation technique which speeds up R-CNN
but fine-tuning algorithm proposed in SPPnets [15] cannot
update the layers precede the Spatial pyramid pooling. In
addition, as it deals with a variable window size of pooling,
one stage (end to end) training was difficult. Fast-R-CNN fixes
the drawbacks of R-CNN and SPPnet, whiling improving their
speed and accuracy. The single-stage training process in Fast
R-CNN can update all network layer using a multi-task loss
and does not need disk storage for feature caching. In all of
the above approaches, the power of CNN has been used only
for regression and classification. The concept of Fast R-CNN
was extended further in Faster R-CNN [14] by introducing a
Region Proposal Network (RPN). The Faster R-CNN merges
the RPN and Fast R-CNN into a single network by sharing
their convolutional features using a popular terminology of
neural networks with ‘attention’ mechanisms, the RPN guides
the network for object regions. RPN consists of several addi-
tional convolutional layers, build on top of the convolutional
feature map. Although the accuracy of R-CNN and Fast R-
CNN were satisfactory, they were computationally expensive
which make them unsuitable for real-time applications, unlike
Faster R-CNN. We, therefore, selected the Faster R-CNN [14]
as our approach in this investigation.

III. METHODOLOGY

The object detector called Faster R-CNN [14] is a partic-
ularly successful method for general object detection. It is a
single integrated network which consists of two modules: (a)
region proposal, and (b) region classifier. Fig. 2 shows a Faster
R-CNN architecture which is a single, unified network for
object detection. A deep fully convolutional network proposes
a set of regions and then the regions are used by the Faster
R-CNN [13] detector. The Region Proposal Networks (RPNs)
are designed to predict region proposals with a wide range of
scales and aspect ratios. Sharing of convolution at test time
with the very efficient object detection network [13] signifi-
cantly reduces the marginal cost of proposals computation.

The proposed RPN model [14] can be combined with a
classification model to achieve the detection and classification
in an end to end framework. Different CNN-based classifica-
tion models with different sizes (small, medium and large)
were combined with the RPN network in our experiments
to obtain Faster R-CNN models of three different sizes (i.e.
the number of layers). The RPN consists of a few additional
convolutional layers that simultaneously regress region bounds
and objectness scores at each location on a regular grid. In
faster R-CNN, RPN was constructed (see Fig. 2) on top of
the convolutional feature map which was trained end-to-end
to generate high-quality region proposals. The following three
classification models (ZF, CNN-M, and VGG-16) were used

in our experiments to combine with RPN and compare the
performances.

ZF Net [16]: Architecture of this network model is similar
to AlexNet with minor modifications. The filter size was
reduced to 7× 7 compared to 11× 11 in AlexNet in the first
convolutional layer of ZF net which helps to retain a significant
pixel information in the input data. ZF net used ReLUs as
activation functions, for error function cross-entropy loss and
the network trained as batch stochastic gradient descent.

CNN-M [7]: Architecture of this model is similar to the ZF
model with some modifications. A smaller receptive field of
the first convolutional layer and a decreased stride was shown
to be beneficial. However, convolutional layer 2 uses a larger
stride (2 instead of 1) to keep the computation time reasonable.
The main difference between this model and ZF is that CNN-
M uses fewer filters in the layer 4 (512 instead of 1024).

VGG-16 Net [17]: This CNN model consists of 19 layers
that only used 3 × 3 filters with a stride and pad of 1, max-
pooling with 2 × 2 and stride 2. The filter size of 3 × 3 is a
contrast to ZF Nets 7 × 7 filter. An effective receptive field
of 7× 7 was achieved using 3 back to back conv layers. The
model has used scale jittering as data augmentation during
training and ReLU layers are used after each convolutional
layer. The batch gradient descent was used during training.

The Caffe deep learning library [18] was used for all the
experiments presented here. In our experiments, publicly avail-
able pertained Caffe models for object detectors were used
for initial weights and to enable transfer learning technique.
Hence, to take advantage of all network architectures used in
our experiments, transfer learning technique from ImageNet
[8] was used during fine-tuning of our models. A better
performance and a faster convergence can be achieved using
the transfer learning technique.

Implementation details: All experiments have been con-
ducted on an Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz
Linux cluster node with a GeForce GTX 1080 GPU installed.
The python interface code was used to conduct all the exper-
iments. The models are trained with a learning rate of 0.001
and batch size of 128. The RPN batch size was set to 256
for region-based proposal networks (RPN). Regions proposal
networks were trained end-to-end using back-propagation and
stochastic gradient descent (SGD). Non-maximum suppression
(NMS) was employed to the proposals based on the class
scores to reduce redundancies arising from RPN proposals.
Performance of each network architecture at different itera-
tions was also analyzed. In the training phase, the snapshot
of trained models was saved at an interval of 10k iterations.
Detections with overlap greater than the 50% Intersection over
Union (IoU) threshold with the corresponding ground-truth
bounding box are considered as true positive and all other
detections as false positive and IoU calculated as:

IoU(BBpred, BBgt) =
area(BBpred ∩BBgt)

area(BBpred ∪BBgt)
(1)

where BBpred and BBgt denotes predicted bounding box and
ground truth bounding box respectively. The Average Precision
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Fig. 2. An architecture of Faster R-CNN. Here, the feature map is generated by 5 layers convolution which is shared by the RPN network and the region
classifier.

(AP) is computed for each class, while mean Average Preci-
sion (mAP) denotes the mean over all the computed APs.

IV. RESULTS AND DISCUSSIONS

Dataset: Details about the fish datasets used for the ex-
periments are described here. Underwater videos used in our
experiments were provided by the authors as part of a collabo-
rative research program based at University of Sunshine Coast
[19], [20]. The videos contain fish communities in marine
waters of beaches and estuaries across southeast Queensland,
obtained using baited and unbaited GoPro cameras. 4909
images containing 12365 annotated samples of 50 species
of fish and crustaceans were used in our experiments. The
Vatic interactive video annotation tool [21] was employed to
annotate the data and was standardized in PASCAL VOC [22]
format. The dataset was divided into training, validation, and
test sets using a random sampling technique. The training,
validation and test set comprises of 70%, 10%, and 20% data
respectively.

Detection results: The detection results of several fish
species from two sets of experiments are detailed in Table
I and Table II with the mean Average Precision (mAP)
results. Table I shows the results obtained from three different
experiments using three network architectures considered in
our experiments. The best result obtained among all iterations
are presented here and the VGG-16 network outperformed.
Mean AP of 0.72 and 0.71 and 0.71 were obtained after 70k
iterations for VGG-16, CNN-M, and ZF respectively when
the whole dataset was considered. However, accuracy was
improved in experiment II when species only have adequate
training samples are considered. Table II shows that maximum
mAP of 82.4% was achieved on the VGG16 network. An
average time taken for processing an image for detection
during testing process was 0.2 seconds (i.e. 5 fps) for VGG-
16 and 0.1 seconds (i.e. 10 fps) for ZF and CNN-M network
models which imply that the system is capable of processing
video in real-time. Fig. 3 shows how the mAP improves over
iterations (x-axis represents iterations in thousands) during the
testing process on three different network architectures and
the highest mAP of 0.72 was obtained for VGG-16 at 70k
iterations. The class-wise AP analysis has also presented for
some sample species in Fig. 4. Fig. 5 shows how the accuracies
were improved over iterations in experiment II. An mAP of
82.4% was achieved on the test dataset after 90K iterations.
The qualitative detection results of several sample frames are
shown in Fig. 6. The detected region along with the species

TABLE I
RESULTS OBTAINED FROM THE EXPERIMENT I ON FISH TEST DATASET. AP

REPRESENTS AVERAGE PRECISION

Species
AP on

VGG-16
AP on

CNN-M
AP on

ZF
Mackerel tuna 1.00 1.00 0.55

Reticulated surf crab 1.00 1.00 1.00
School mackerel 1.00 1.00 0.55

Blueswimmer crab 0.91 0.90 0.91
Smooth flutemouth 0.91 0.81 0.91

Starry pufferfish 0.91 0.91 0.91
Sand crab 0.90 0.81 0.81

Spotted wobbegong 0.82 0.90 0.88
White spotted eagle ray 0.82 0.64 1.00
White spotted guitarfish 0.82 0.86 0.89

mAP 0.72 0.71 0.71

TABLE II
RESULTS OBTAINED FROM THE EXPERIMENT II ON FISH TEST DATASET.

AP REPRESENTS AVERAGE PRECISION

Species
AP on

VGG-16
AP on

CNN-M
AP on

ZF
Bluespotted flathead 1.000 0.818 0.831

Sand whiting 1.000 0.945 0.909
Smooth golden toadfish 1.000 1.000 1.000

Southern herring 1.000 0.947 0.867
Smoothnose wedgefish 0.996 0.989 0.892

Painted grinner 0.986 0.951 0.972
Reticulate whipray 0.909 0.909 0.909

Starry pufferfish 0.909 0.899 0.807
Swallowtail dart 0.909 0.838 0.994

Common stingaree 0.906 0.995 0.97
mAP 0.824 0.769 0.750

Fig. 3. Mean average precision on test data using 3 different models from
experiment set I. X-axis represents iteration in thousands.

name is shown in all the detected frames. Some previous
works on fish identification in the literature are significant
as a fish classifier. However, our proposed system is more
advanced as it detects the region of interest and classifies all
the species in a single pipeline. As the existing works on fish
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(a) (b)

(c) (d)
Fig. 6. Qualitative results on sample frames extracted from the underwater videos of surf across southeast Queensland. Detected species are marked with a
coloured bounding boxes.

(a) (b)

(c) (d)
Fig. 7. Erroneous detections. (a,c) Ground Truth frames (b,d) Frames after detection.

identification were not conducted on any standard dataset and
there is no public dataset available, a proper comparative study
cannot be performed. However, Spampinato et al. [4] reported
an accuracy of 54% on a dataset having only 10 species.
An error analysis was performed on frames with incorrect
detections. It was found that high levels of occlusion among a
school of fishes was the main cause of the error. Fig 7 shows
some sample frames with incorrect detection. Two frames with
ground-truthing and the same frames after detection are given
side by side to aid understanding. Fig. 7(b) shows one false

negative case as the ground truth sample is occluded. Fig.
7(d) shows two false positive cases as the pattern of ground
truth fish data is identical with some background surf in this
particular case.

V. CONCLUSION

Automatic assessment of fish/species abundance using re-
mote underwater video stream has tremendous potential over
traditional approaches in terms of time and cost-effectiveness.
The objective of the work was to develop a system for au-
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Fig. 4. Avg. precision analysis at different iterations on multiple fish and
crustacean species in the dataset. X-axis represents iteration in thousands.

Fig. 5. Mean average precision on test data using 3 different models from
experiment set II. X-axis represents iteration in thousands.

tomatic detection and recognition of species from underwater
videos. The significance of such a system has been studied and
an appropriate work towards automation was not found in the
literature on the assessment of fish abundance. An end to end
deep learning approach was adapted to process a video stream
and extract all the information required for the assessment.
A range of experiments was conducted using different deep
learning models and a comprehensive analysis of performance
is presented. An mAP of 82.4% was achieved across a very
wide variety of marine species. The main contributions of our
work are, therefore:

• Proposed a high-performance fish identification system
by fine-tuning the ‘Faster R-CNN’ which has been
adapted to our problem

• Presentation of a wide range of experiments for un-
derwater fish detection and identification using three
different (small, medium and large sizes) state-of-the-art
classification network models

• Introduction of a newly developed fish abundance dataset
which contains 50 different species from multiple beaches
and estuarine sites across southeast Queensland, Aus-
tralia. The number of species considered in these exper-
iments is significantly higher than previously proposed
approaches. The dataset is annotated and standardised
in PASCAL VOC [22] format using the Vatic video
annotation tool [21].

In future, we aim to further improve the performance by
enhancing the CNN architecture and training the system with
more samples in the training dataset.
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