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Abstract—Photo aesthetics assessment is a challenging prob-
lem. Deep Convolutional Neural Network (CNN)-based algo-
rithms have achieved promising results for aesthetics assessment
in recent times. Lately, few efficient and effective attention-
based CNN architectures are proposed that improve learning
efficiency by adaptively adjusts the weight of each patch during
the training process. In this paper, we investigate how real
human attention affects instead of CNN-based synthetic attention
network architecture in image aesthetic assessment. A dataset
consists of a large number of images along with eye-tracking
information has been developed using an eye-tracking device1

power by sensor technology for our research, and it will be the
first study of its kind in image aesthetic assessment. We adopted
a Residual Attention Network and standard ResNet architectures
which achieve state-of-the-art performance image recognition
tasks on benchmark datasets. We report and demonstrate our
findings on photo aesthetics assessment with two sets of datasets
consist of original images and images with masked attention
patches.

Index Terms—Photo Aesthetic Assesment, Image Aesthetic
Evaluation, Great Barrier Reef, Aesthetic Scoring, Deep Learning

I. INTRODUCTION

Image quality assessment and predict photo aesthetic values
have been a challenging problem in image processing and
computer vision, as aesthetic assessment is subjective (i.e.
influenced by individual’s feelings, tastes, or opinions) in
nature. A significant number of existing photo aesthetics
assessment methods are available ([1], [2], [3], [4], [5], [6],
[7]) in the literature using extraction of visual features and then
employ various machine learning algorithms to predict photo
aesthetic values. Aesthetic assessment techniques aim to quan-
tify semantic level characteristics associated with emotions
and beauty in images, whereas technical quality assessment
deals with measuring low-level degradations such as noise,
blur, compression artifacts, etc.

Based on the available image assessment techniques in the
literature, full-reference and no-reference approaches are the
two main categories of image quality assessment. While the
availability of a reference image is assumed in the former
(metrics such as PSNR, SSIM [8], etc.), typically blind (no-
reference) approaches rely on a statistical model of distortions

1https://www.tobii.com/group/about/this-is-eye-tracking/

to predict image quality. A quality score is to predict that
relates well with human perception is the main goal in both
cases.

Broadly, the task involved to distinguish computationally
the aesthetic attributes of an image [9] for a related assump-
tion. The literature proposes several methods to solve such
challenging classification and scoring problems. The earlier
approaches can be categorised into two groups, based on visual
feature types (hand-crafted features and deep features based
on Convolutional Neural Network), and evaluation criteria,
dataset characteristics and evaluation metrics (examples in-
clude: Precision-recall, Euclidean distance, ROC curve, and
mean Average Precision). More specifically, the term ”hand-
crafted” features refer to properties derived employing various
algorithms using the information present in an image. As an
example, edges and corners are two simple features that can
be extracted from images. A basic edge detector algorithm
works by finding areas where the image intensity ”suddenly”
changes. For example, the shell of a turtle can be identified
as an edge. Likewise, the so-called Histogram of Gradients
(HoG) [10] is another type of handcrafted feature that can be
applied in many different ways.

Earlier proposed techniques designed hand-crafted aesthet-
ics features according to aesthetics perception of people and
photography rules [11], [12], [1] and obtained encouraging
results while handcrafted feature design for aesthetic assess-
ment is a very challenging task. More robust feature extraction
techniques were proposed later on to leverage more generic
image features (e.g. Fisher Vector [13], [14], [15] and the bag
of visual words [6]) for photo aesthetics evaluation. Generic
feature-based representation of images is not ideal for image
aesthetic assessment as those features are designed to represent
natural images in general, and not specifically for aesthetics
assessment.

In contrast, Convolutional Neural Network (CNN)-based
features are learning from the training samples, and they do
this by using dimensionality reduction and convolutional fil-
ters. Recent approaches to image aesthetic assessment mostly
apply more complex and robust deep Convolutional Neural
Networks (CNN) architectures ([16], [17], [18], [19]). Avail-
ability of large-scaled labeled and scored images from online
repositories have enabled CNN-based methods to perform bet-
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Fig. 1. Some example images from GBR dataset with score µ(±σ), where µ and σ represent Mean and Standard Deviation (SD) of score, respectively. (a)
high aesthetics and low SD (µ = 9.583, SD = 0.64), (b) high aesthetics and low SD (µ = 9.462, SD = 0.746), (c) high aesthetics and high SD (µ = 5.916,
SD = 3.773), (d) low aesthetics and low SD (µ = 2.273, SD = 1.42), (e) low aesthetics and low SD (µ = 3.0, SD = 1.0), (f) low aesthetics and high SD
(µ = 3.454, SD = 3.23)

ter than previously proposed non-CNN approaches [20], [21].
Moreover, having access to pre-trained models (e.g. ImageNet
[22]) for network training initialization and fine-tuned the
network on subject data of image aesthetic assessment have
been proven more effective technique for typical deep CNN
approach.

[23]

II. RELATED WORK

Recently, deep learning methods have shown great success
in various computer vision tasks, such as object recognition
[24], [22], [25], object detection [26], [27], and image classi-
fication [28]. Deep learning methods, such as deep convolu-
tional neural network and deep belief network, have also been
applied to photo quality/aesthetics assessment and have shown
good results []. As most deep neural network architectures
require fixed-size inputs, recent methods [] transform input im-
ages via cropping, scaling, and padding, and design dedicated
deep network architectures, such as double-column or multi-
column networks, to simultaneously take multiple transformed
versions as input.

III. METHODOLOGY

We propose two novel Deep CNN architecture for image
aesthetics assessment adapted from the recently published
state-of-the-art image classification model ([29], [23]). Both
the models used in our experiments have been well tested as
image classifier for a large number of classes. In experiments,
our aim for predictions with higher correlation with human rat-
ings, instead of classifying images to low/high score or mean
score regression, the distribution of ratings are predicted as a
histogram [30]. The squared EMD (Earth Mover’s Distance)
loss-based assessment was proposed by Talebi et al.[30], which
shows a performance boost inaccurate prediction of the mean
score. All network models for aesthetic assessment are based
on image classifier architectures. Two differnt architectures
(with and without attention mechanism) state-of-the-art net-
works are explored for the proposed applications. Networks
used in our experiments were first trained and then fine-tuned
using the large-scale aesthetics assessment AVA dataset [20].
The AVA dataset has 250,000 images, which is very useful
for training such a large deep neural network model. The
complete architecture of this project consists of different sub-
modules, and each of these sub-modules consists of building
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Fig. 2. Four example images from GBR dataset along with same processed images after studying eye movements. (a), (c), (e), (g) are original images. (b),
(d),(f), (h) are masked images of (a), (c), (e), (g) respectively, after masked using attention patch information obtained from the Tobii eye-tracking device.

blocks, such as pooling, filters, activation functions, and so
forth. The following sections provide more information on the
sub-modules. A more detailed description of the architecture
and different modules is provided below.

ResNet: Theoretically, neural networks should get better
results as added more layers. A deeper network can learn
anything a shallower version of itself can, plus possibly some
more parameters. The intuition behind adding more layers to a
deep neural network was that more layers progressively learn
more complex features. The first, second, third, layers learn
features such as edges, shapes, objects, respectively, and so on.
He et al. [29] empirically presented that there is a maximum
threshold for depth with the traditional CNN model. As more
layers are added, the network gets better results until at some
point; then as continue add extra layers, the accuracy starts
to drop. The reason behind failures of the very deep CNN
was mostly related to optimization function, network weights
initialization, or the well-known vanishing/exploding gradient
problem. Vanishing gradients are especially blamed, however,
He et al. [29] argue that the use of Batch Normalization
ensures that the gradients have healthy norms. In contrast,
deeper networks are harder to optimize due to add more
difficulty in the process of training; it becomes harder for the
optimization to find the right parameters.

The problem of training very deep networks has been
attenuated with the introduction of a new neural network layer
-The Residual Block 3. Residual Networks attempt to solve
this issue by adding the so-called skip connections. A skip
connection is depicted in Fig 3. If, for a given dataset, there
are no more things a network can learn by adding more layers

Fig. 3. Residual learning: a building block.

to it, then it can just learn the identity mapping for those
additional layers. In this way, it preserves the information in
the previous layers and can not do worse than shallower ones.
So, the most important contribution to ResNet architecture is
the ‘Skip Connection’ identity mapping.

This identity mapping does not have any parameters and
is just there to add the output from the previous layer to
the layer ahead. However, sometimes x and F(x) will not
have the same dimension. Recall that a convolution operation
typically shrinks the spatial resolution of an image, e.g. a 3x3
convolution on a 32 x 32 image results in a 30 x 30 image.
The identity mapping is multiplied by a linear projection W
to expand the channels of shortcuts to match the residual.
This allows for the input x and F(x) to be combined as input
to the next layer. A block with a skip connection as in the



image above is called a residual block, and a Residual Neural
Network (ResNet) is just a concatenation of such blocks.

y = F (x,Wi) +Wsx
The above equation shows when F(x) and x have a different

dimensionality such as 32x32 and 30x30. This Ws term can be
implemented with 1x1 convolutions, this introduces additional
parameters to the model. The Skip Connections between
layers add the outputs from previous layers to the outputs of
stacked layers. This results in the ability to train much deeper
networks than what was previously possible. He et al. [29]
proposed their network with 100 and 1,000 layers and tested
on bench mark datasets such as CIFAR-10, ImageNet dataset
with 152 layers and achieved state-of-the-art performance.

Residual Attention Network: Residual Attention Network
(Fig 4), a convolutional neural network that incorporates both
attention mechanism and residual units which can incorporate
with state-of-art feed forward network architecture in an
end-to-end training fashion. Residual Attention Network is
constructed by stacking multiple Attention Modules which
generate attention-aware features. Residual unit is a basic
component that utilizes skip-connections to jump over few
layers with nonlinearities and batch normalizations which is
the prominent feature is the attention module.

Each Attention Module (see Fig. 4) is divided into two
branches: mask branch and trunk branch. The trunk branch
performs feature processing with Residual Units and can
be adapted to any state-of-the-art network structures. Mask
Branch uses bottom-up top-down structure softly weight out-
put features with the goal of improving trunk branch features.
The Bottom-Up step collects global information of the whole
image by downsampling (i.e. max pooling) the image. The
Top-Down step combines global information with original
feature maps by upsampling (i.e. interpolation) to keep the
output size the same as the input feature map. Inside each
Attention Module, bottom-up top-down feedforward structure
is used to unfold the feedforward and feedback attention
process into a single feedforward process. The attention-aware
features from different modules change adaptively as layers
going deeper. Importantly, an attention residual learning to
train very deep Residual Attention Networks which can be
easily scaled up to hundreds of layers. The experiment also
demonstrates that Residual Attention Network is robust against
noisy labels.

In Residual Attention Network , a pre-activation Residual
Unit [31], ResNeXt [32] and Inception [33] are used as basic
unit to construct Attention Module. Given trunk branch output
T(x) with input x, the mask branch uses bottom-up top-down
structure [34], [35], [36], [35] to learn same size mask M(x)
that softly weight output features T(x). The bottom-up top-
down structure mimics the fast feedforward and feedback
attention process. The output mask is used as control gates
for neurons of trunk branch similar to Highway Network [37].
The output of Attention Module H is:

Hi, c(x) = Mi, c(x)× Ti, c(x)

IV. RESULTS AND DISCUSSIONS

Dataset: For experimental purposes, both publicly available
datasets and dataset developed in-house were used. For the
dataset specific to the Great Barrier Reef (i.e. the GBR
dataset), we used 5,417 underwater GBR images, which were
downloaded from the Flickr social media platform. These
images were sorted based on the content and then rated by
participants in an online survey for their aesthetic beauty.
At least 10 survey participants provided an aesthetic score
for each image and the mean score was calculated. Most of
the images (i.e. 80%) served as training material to enable
the proposed Neural Network model to learn key feature
parameters. The remaining 20% of the data were used during
the test and validation phases. The validation dataset helps
to understand the system performance in terms of accuracy
during the training phase, whereas the test set is normally used
once the training phase is completed and ready for deployment.
To better understand the distribution of ‘beautiful’ and ‘ugly’
pictures in the dataset, Figure 5 presents the number of images
with scores above or equal/below 5. More than 2,080 images
were scored as highly aesthetic (score > 5) and only 420
(score <= 5) images were scored as having low aesthetics.
Figure 5 also shows how many images of high and low scores
were used in each experimental stage.

The GBR dataset of 5,471 images is comparatively small for
training a multi-layered deep Convolutional Neural Network.
It was, therefore, necessary to complement the GBR data with
a large-size, publicly available dataset (AVA, see Murry et al.,
2012). This helped to train the system and allowed us to use
the in-house GBR dataset for fine-tuning the algorithm. The
detailed dataset description of the AVA [20] is described below.

• AVA1: We adopted the score of 0.5 (mean aesthetic score
ranges between 0 and 1) as the threshold value to divide
the dataset into high aesthetic value and low aesthetic
value classes. By doing this, we obtained 74,056 images
in the low aesthetic value class and 181,447 images
in the high aesthetic value class. 229,954 and 25,549
(approximately 10% images) were used for testing system
performance.

• AVA2: In a different experimental setup, and to increase
the gap between images with high aesthetic and low aes-
thetic value, all images were sorted based on their mean
scores. Then, the top 10% of images were considered as
highly aesthetic and the bottom 10% images were classed
as low aesthetic. Thus, 51,100 images (approximately,
20% of the full dataset) then formed the AVA dataset
that was used for training.

V. CONCLUSION

The objective of the work was to study the effectiveness of
real human attention obtained using an eye-tracking device on
deep Convolutional Neural Network architecture for automatic
image aesthetic assessment and predicting an aesthetic score
for images. The significance of aesthetic evaluation system was
studied in details from the literature. A state-of-the-art deep



Fig. 4. An architecture the Residual Attention Network Architecture [23]. The output layer is modified to produce image aesthetic score instead class label.

Fig. 5. Score distribution of the GBR dataset developed in-house, containing
a total of 5417 images.

TABLE I
PERFORMANCE OF THE PROPOSED METHOD AND FEW RECENTLY
PUBLISHED ARCHITECTURES IN PREDICTING IMAGES FROM GBR

DATASET. ACCURACY VALUES ARE BASED ON CLASSIFICATION OF PHOTOS
TO TWO CLASSES HIGH AND LOW AESTHETICS(COLUMN 2). LCC (LINEAR
CORRELATION COEFFICIENT) AND ARE COMPUTED BETWEEN PREDICTED

AND GROUND TRUTH MEAN SCORES (COLUMN 3) AND STANDARD
DEVIATION OF SCORES (COLUMN 5). EMD MEASURES CLOSENESS OF

THE PREDICTED AND GROUND TRUTH RATING DISTRIBUTIONS.

Model Accuracy LCC-Mean LCC-std.dev EMD
NIMA(MobileNet) 80.36% 0.518 0.152 0.081

NIMA(VGG16) 80.60% 0.610 0.205 0.052
NIMA

(Inception-Resnet)
81.51% 0.636 0.233 0.050

ResNet 81.74% 0.641 0.211 0.045
Residual Attention

Network
81.74% 0.641 0.211 0.045

Residual Attention Network architecture and ResNet were
adapted to our need for the modeling of our GBR aesthetic
assessment task. A wide range of experiments was conducted
using a comprehensive analysis of performance is presented.
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