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Abstract 
Seagrasses are a dominant feature in the seascape of Moreton Bay. They host numerous 
animals and provide the region with a wide range of ecosystem services that we are only 
beginning to better understand. In the past 20 years, the focus of seagrass research in
Moreton Bay has shifted towards predictive modelling based on comprehensive 
ecological understanding. There are seven species of seagrasses in Moreton Bay that
persist across a wide range of environmental conditions from muddy sediments in the
western Bay to the cleaner, sandier waters of the eastern Bay adjacent to Moreton 
(Moorgumpin) and Stradbroke (Minjerribah) Islands. There has been an encouraging 
recovery of meadows in some of the more degraded parts parts of the Bay, yet with an 
ever-increasing human population in South East Queensland, the threats to seagrasses 
still require continued research effort and careful management. This paper reviews the
current understanding of Moreton Bay’s seagrass meadows and provides 
recommendations for future research.
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Introduction – Seagrasses in the global context 
Seagrasses are the dominant habitat-forming component of many shallow coastal zones 
globally. They provide critical services such as habitat (1), nutrient recycling (2), coastal 
stabilisation (3) and carbon sequestration (4). These services are estimated to be worth 
approximately $27,000 ha-1yr-1 (5), yet despite this value, humans have contributed to 
steady declines of seagrass extent globally. Loss of seagrass has accelerated from 0.7% 
pre-1945 to 9% annually post-1945 (6). A range of global threats have been 
documented: declining water quality from increased sedimentation causing light stress, 
physical removal through land reclamation, eutrophication causing algal overgrowth, 
increasing sea surface temperature, and increased frequency of storms (7).  

The seagrasses of Moreton Bay are not immune to these threats, which have been 
increasing steadily since the 1990s (8). Sediment accretion in the central basin in 
Moreton Bay has increased by three to nine times over the past 100 years (9), suggesting 
large-scale changes to sediment erosion from catchments flowing into the Bay. Major 
floods have resulted in seagrass loss in the Bay with nearly 20 km2 lost from southern 
Deception Bay during the 1996 flood (10). The predicted rise in the population of South 
East Queensland from approximately 3.5 million in 2016 to 5.35 million by 2040 (8) 
means that pressures on seagrass ecosystems are likely to increase for the foreseeable 
future. Despite the forecast, and in the period since the publication of the first Moreton 
Bay and Catchments book (10), nutrient concentrations in the western part of Moreton 
Bay have declined significantly (see Saeck et al. (11), this volume) due to the nearly $1 
billion spent on improvements to sewage treatment.  

This paper outlines advances in our knowledge of seagrass responses to threats that have 
been collected since the previous Moreton Bay & Catchment book released in 1998. We 
discuss the current distribution and diversity of seagrass ecosystems in Moreton Bay 
and how patterns have changed over time, the role of ecological feedbacks in driving 
resilience of the Bay’s seagrasses to floods, the projected effects of climate change and 
land-use change, and the diversity of fauna that rely on the Bay’s seagrass meadows. 

The diversity and distribution of seagrasses in Moreton Bay 
There are seven species of seagrasses in Moreton Bay. Seagrass is distributed across 
Moreton Bay (Fig. 1), predominantly in intertidal and subtidal regions to 5 m depth 
(below lowest astronomical tides, LAT), but some meadows of Halophila spp. in the 
northern Bay grow below 10 m depth. Seagrasses range from colonising species 
(Halophila ovalis), to opportunistic species (Zostera muelleri) and persistent species 
(Cymodocea serrulata). Colonising and opportunistic species are faster growing and 
short-lived, and recover rapidly following disturbance (12) (Fig. 2). Moreton Bay is, 
however, devoid of the larger, highly persistent species that grow in northern Australia 
(e.g. Enhalus spp.) and southern and western Australia (e.g. Posidonia spp.). 
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Figure 1. The distribution of seagrass species in Moreton Bay. Mapping conducted as 
part of the Ecosystem Health Monitoring Program (EHMP) in conjunction with 
research by the CRSSIS, University of Queensland (funded by Coastal Co-operative 
Research Centre). First published 2004, last updated 20 Feb 2019 by Healthy Land 
and Water. 
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Figure 2. Characteristics of seagrass species found in Moreton Bay. Moreton Bay is 
dominated by colonising and opportunistic species that tend to be fast-growing and short-
lived with a rapid recovery rate following disturbance, providing the conditions growth are 
suitable. (Adapted from (12)).  
 
The largest expanse of seagrass in Moreton Bay is on the eastern side with mixed species 
meadows occupying the extensive intertidal and shallow subtidal Eastern Banks 
between Moreton and North Stradbroke islands. At least six of the seven species are 
found on and around these banks, with Z. muelleri, H. univervis and H. ovalis occupying 
the intertidal areas and Syringodium isoetifolium and Cymodocea serrulata dominating 
the shallow subtidal areas between –1 m and –2 m LAT. Halophila spinulosa dominates 
the deeper areas of the eastern Bay between –2 m LAT and –5 m LAT. In this area of 
the Bay, the species diversity and cover (%) vary through space and time (13), 
particularly on the Maroom and Amity banks, suggesting that changes in environmental 
conditions on the Eastern Banks (e.g. sediment movement, current) are a strong 
influence.  

The diversity of species within meadows drops in the poorer water quality regions of 
the southern and western embayments of Moreton Bay (Fig. 1). These areas contain four 
species, the dominant being Z. muelleri which occupies both the intertidal flats and the 
subtidal zone down to depths of approximately –3 m LAT. H. ovalis typically occupies 
bare patches within Z. muelleri meadows in the intertidal zones and in sparse (~1% 
cover) ephemeral meadows in the deeper areas (~-5 m LAT) between Peel and Macleay 
islands and in Waterloo Bay between Manly and St. Helena Island. H. spinulosa 
typically occupies depths below the deep edge of Z. muelleri meadows.  
 
The highest cover of seagrass in western Moreton Bay occurs in Waterloo Bay to the 
south of the Brisbane River. Waterloo Bay is dominated by Z. muelleri in the intertidal 
and shallow subtidal areas and by H. spinulosa and sparse H. ovalis in the deeper 
subtidal regions of the Bay (14). In the southern Bay channels, seagrass distribution, 
predominantly Z. muelleri, is limited to the thin strips of intertidal and shallow subtidal 
(0.5–1.0m below LAT) substrate on the edge of deeper channels (15).  
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A recent study into the relationship between genetic diversity and disturbance in 
Z. muelleri, one of the most widespread and abundant species in Moreton Bay, showed 
that seagrass meadows subject to long-term poor water quality have lower genotypic 
diversity (16). This suggests that in highly disturbed sites in the western and southern 
regions of the Bay, previous disturbances might have selected for a narrow range of 
genotypes to enable Z. muelleri to cope with poor conditions.  

Since 1998 three maps of seagrass extent have been produced, however, each of these 
has used a slightly different technique to collect the information which has meant that 
finer scale comparisons (e.g. <5 km2) of seagrass distribution cannot be made with 
confidence (17). At the larger ‘bay scale’, however, there has been significant variation 
in seagrass distribution particularly in Deception Bay and in the southern Bay. In 
southern Deception Bay, 20 km2 was lost in 1996 following a significant flood in the 
Caboolture River catchment (10) (Fig. 1). Seagrass was absent from the area, replaced 
in part by substantial meadows of the algae Caulerpa taxifolia, until approximately 2009 
when small patches of Z. muelleri appeared in the intertidal zone. Patches consolidated 
into sparse meadows in the intertidal and shallow subtidal areas surrounding 
Scarborough boat harbour. Since 2009, the seagrass extent in southern Deception Bay 
has steadily moved towards the west (Fig. 1) increasing in depth and therefore increasing 
in extent to nearly 4 km2 by the first half of 2013 and to 6 km2 in August 2016 (18).  

The distribution of seagrass in other parts of the Bay has remained similar to that of 
1996 (17). As pointed out by Roelfsema et al. (17), however, the different methods used 
to map seagrass distribution and the paucity of field-based data collected in 2011 have 
made it difficult to fully elucidate differences in distribution. There is still little seagrass 
cover in Bramble Bay; however, temporary populations of the opportunistic species H. 
ovalis have been recorded on some intertidal flats in this region of the Bay (19) since 
2013 and more recently meadows of subtidal Z. muelleri, H. ovalis and H. spinulosa 
have been observed on the southern end of the Redcliffe Peninsula (15). Despite this 
encouraging news, modelling using water quality monitoring data, sediment erosion 
estimates, and seagrass distribution data has indicated that a non-linear decrease in 
habitat suitable for seagrass is expected with the increase in sediment loads predicted 
under future climate and management scenarios (20). 
 
Impacts of disturbance on the seagrasses of Moreton Bay 
The influence of riverine discharge and ongoing resuspension of fine sediments in the 
western and southern zones of Moreton Bay results in poor water quality. In contrast, 
the proximity to ocean water via the northern and two eastern passages into the Bay 
means water quality is typically good in the eastern zones of the Bay, resulting in an 
east–west decline in water quality across the Bay (11).  

Seagrasses worldwide are used as an indicator of water quality impacts. In Moreton Bay, 
correlations between water quality and the maximum depth limit of seagrass growth 
have been used as a biological indicator of light availability in the Ecosystem Health 
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Monitoring Program since 1996 (21). The program was based on the observation that Z. 
muelleri grew to shallower depths as a result of poor light availability due to higher 
concentrations of phytoplankton and suspended sediments (22). Correspondingly, Z. 
muelleri meadows on the eastern side of the Bay grew deeper correlating well with the 
water quality gradient across the Bay.  

After nearly 20 years of monitoring, this pattern broadly remains with the two deepest 
Z. muelleri sites in the well-flushed locations of northern Deception Bay (2.81 m below 
LAT) and at Crab Island (3.1 m below LAT) adjacent to Moreton Island (13) (Fig. 3). 
The sites with the poorest depth range are in the poorly flushed southern Deception Bay 
where seagrasses were lost following the 1996 Caboolture River flood, or in southern 
Moreton Bay close to the Logan River mouth (0.26 m deep at Behms Creek near Jacobs 
Well).   
 

 
Figure 3. The depth range of Zostera muelleri meadows from across Moreton Bay. Typically 
the meadows in the poorer water quality areas of the western and southern Bays have smaller 
depth ranges; however, the relationship between water clarity and seagrass depth range is not 
linear.  
 
At the remainder of the seagrass depth range sites (Fig. 3), the relationship between 
water quality and Z. muelleri depth range is much less distinct. After nearly 20 years of 
monitoring, the correlation between water quality and depth range is poor (r2=0.4), with 
a large variation in mean water quality at the 18 depth range sites outside the extremes. 
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This suggests that additional factors, rather than just water clarity, are controlling the 
depth limit at those sites (see section on ‘flood resilience’ for possible alternatives).  

The water quality gradient in Moreton Bay does not just influence seagrass distribution. 
Discharge from rivers on the western side of the Bay delivers organic matter and detritus 
that accumulates in seagrass meadows throughout the Bay (23). Carbon accumulation 
in Moreton Bay varies in both space and time (24). Vertical accretion rates and organic 
carbon burial rates have increased significantly since European colonisation in the 
catchment. Vertical accretion rates have increased to 0.66 cm-1yr-1, highlighting the 
impact of rapid catchment land-use changes. There is a similar pattern with carbon burial 
rates, with low rates of both organic carbon (OC) and inorganic carbon (IC) burial prior 
to colonisation (7+5 g OC-2yr-1 and 10+14 g IC m-2yr-1 respectively) being much lower 
than post colonisation (50+82 g OC-2yr-1 and 73+115 g IC m-2yr-1, respectively) (24). 

Despite the stark contrast between pre- and post-European carbon accretion and burial 
rates, the values from Moreton Bay are generally much lower than worldwide estimates. 
Pre-European vertical accretion rates in the Bay were recently estimated at 0.06 cm-1yr-

1, less than half of the world average (25). Various factors may account for this. The 
rapid pace of land-use change (over approximately 150 years) in South East Queensland 
compared to the many hundreds of years of land-use change and therefore organic 
matter accumulation in other areas of the world is a likely factor, particularly in seagrass 
research hotpots in the Northern Hemisphere where many estimates have originated 
(26). The relatively low carbon content of South East Queensland soils (27) may play a 
part as well as the different morphologies and life histories of the smaller, less persistent 
seagrasses of Zostera sp. and Halophila sp. compared to the larger, matte-forming 
temperate seagrass, Posidonia (28).  

In addition to chronic impacts of water quality, seagrass in Moreton Bay is under threat 
by large-scale blooms of Lyngbya majuscula. Lyngbya is a toxic, filamentous 
cyanobacteria that attaches to seagrasses and under the right conditions, blooms and 
smothers the underlying seagrass plants (21). The first well- documented bloom of 
Lyngbya occurred in 1996–97 and covered approximately 7 km2 of the seagrass 
meadows off Godwins Beach in northern Deception Bay. Subsequent blooms and 
reports of the impacts to human health (29) and the crab and finfish harvests in 
Deception Bay (Greg Savige 2017 pers. comm. 02/04) led to a large-scale, multifaceted 
program in the mid 2000s to identify the factors that lead to bloom initiation (30–32).  

Lyngbya attaches to seagrass and can rise to the water surface after gas bubbles 
accumulate (33), thereby removing seagrass leaves and causing substantial seagrass 
impact similar to that seen following light limitation (34). Blooms have been mapped 
throughout the Bay, varying from 8 to 80 km2 (35), but have been recorded most 
regularly in northern Deception Bay and the shallow subtidal seagrass meadows on the 
Eastern Banks. Multiple interacting factors lead to Lyngbya bloom initiation, including 
the available nutrient pool, water temperature, current velocity and the light 
environment (32, 36).   
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Cyanobacteria and algal blooms have a marked effect on the organisms that use seagrass 
meadows in the Bay. Blooms of Lyngbya have a clear negative effect on the nematode, 
copepod and polychaete assemblages but particularly nematodes which, in meadows 
affected by blooms, are approximately half as abundant as those of non-bloom meadows 
(37). The mean density, live mass and number of species of small fish and prawns in 
seagrass meadows tend to decline during Lyngbya blooms, with fish that use both 
seagrasses and mangroves showing greater decline (38). Epibenthic species show 
greater decline than demersal species. The effect of blooms also extends to commercial 
fisheries with data from fishing logs showing how mean monthly fish catch is 
significantly reduced in bloom years. Despite this, seagrass meadows are not entirely 
devoid of life during Lyngbya blooms, with meadows continuing to function as nursery 
habitat for a diverse assemblage of fish and prawns (38).  

The macroalga C. taxifolia has also increased in areal coverage over the past two 
decades (39–41). C. taxifolia is native to Moreton Bay, with museum records dating 
back to 1946 (42). However, there has been widespread concern over the increasing 
distribution of C. taxifolia given its long history of increasing colonisation in the 
Mediterranean Sea. Studies in New South Wales and Moreton Bay indicate that C. 
taxifolia is opportunistically colonising unvegetated areas that have already been 
denuded due to declining water quality, rather than being in direct competition with 
seagrasses (41, 43, 44). C. taxifolia provides some habitat value for fish and 
invertebrates (45), but selected taxa (most notably Syngnathids (e.g. seahorses and 
pipefish)) are absent from C. taxifolia (45, 46). Additionally, habitat preference studies 
indicate that fish spent significantly more time in seagrass than C. taxifolia, and this is 
likely due to a combination of structural, visual and chemosensory cues (45).   

The rhizome system of seagrasses is easily damaged by bait digging and boat propellers, 
and even moreso by larger scale removal activities, and if the meadows do recover from 
such disruption it can take a year or more (47). Unfortunately even low-level trampling 
(by tourists and educational parties) can have a long-lasting detrimental effect (48). 

Resilience to extreme events: the response to the floods of 2011 
Extreme events such as floods and cyclones can have sudden, large and potentially 
destructive effects on the structure and function and ultimately the ecosystem services 
of marine ecosystems (49). Coastal habitats such as seagrass are especially vulnerable 
to extreme events, particularly with increases in the likelihood of higher frequency and 
more intense storms in coastal areas of Queensland. 

In January 2011, a flood in the Brisbane River catchment, the largest in 37 years (50)  
discharged a significant tonnage of sediment into the Bay, reducing the Secchi disc 
depth (a measure of water clarity) to below 1 m in the western Bay from an average of 
2 m (51). The flood caused significant decreases in water quality in the Bay with 
approximately one million tonnes of sediment estimated to have been deposited 
following the flood (52).  
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The most heavily affected meadows in the Bay were in Deception Bay to the north of 
the river mouth and Waterloo Bay, which is connected to the river via the narrow 
channel of Boat Passage (Fig. 1). The areas covered by S. isoetifolium meadows in 
northern Deception Bay reduced by approximately 50% following the flood (53). Other 
seagrass species in the region, predominantly Z. muelleri and H. ovalis, were largely 
unaffected by the flood which is likely a result of the salinity range that both species can 
tolerate (54) compared with S. isoetifolium, which in northern Deception Bay is likely 
at the lower end of its water quality tolerance. This is borne out by the loss of the 
macroalgae C. taxifolia and Udotea spp. (53) and the complete absence of epiphytic 
algae (55), all of which were likely impacted by the predominance of lower salinities 
following the flood. Loss of species diversity within near-shore meadows in Moreton 
Bay is highly likely to continue given the predicted increase in extreme storm events. 
This means that in areas of moderate water quality, diverse meadows could be replaced 
by mono-specific meadows dominated by Z. muelleri, the Bay’s most phenotypically 
plastic species with a wide tolerance for changes in water quality (55).  

This plasticity was demonstrated by responses of Z. muelleri to the 2011 flood. The 
meadows closest to the estuarine discharges in the Bay are subjected to chronically poor 
water quality with light quality that often fluctuates below the minimum light 
requirements of the species. As a result, Z. muelleri in these meadows has physiological 
and morphological adaptations that maximise photo-efficiency (e.g. increased 
chlorophyll content, wider and longer leaves, and a greater chl a:b ratio) and enhanced 
investment in below-ground carbohydrate storage (e.g. increase rhizome starch 
concentrations) (55).  

Z. muelleri in the meadows in the comparatively well-flushed eastern Moreton Bay is 
characterised by physiological and morphological adaptations typical of plants 
inhabiting areas of stable water quality and abundant light. Leaves are smaller and 
thinner with lower chlorophyll content (56, 57), there is a greater energy investment in 
below-ground biomass and rhizomes are smaller with lower concentrations of 
carbohydrates. Following the flood, the plants in these meadows exhibited the same 
physiological response as Z. muelleri plants in the western Bay indicating similar levels 
of stress despite the flood impact being approximately 10% of that felt in the west (55).  
 

The importance of feedback loops for maintaining seagrass meadows 
Seagrasses globally are quintessential ecosystem engineers, exerting considerable 
influence on the environmental conditions that in many cases are essential to their 
persistence. As seagrass meadows support a diverse range of organisms disproportionate 
to their area (1), the loss of meadows results in an impact greater than the loss of 
meadows alone and can significantly reduce their ability to recover. The interactions 
between seagrass and local environmental conditions can result in non-linear responses 
to impacts which are controlled to a large degree by the presence of feedback loops (58–
60). Feedbacks can result in seagrass persisting in areas that might otherwise be 
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taxifolia is opportunistically colonising unvegetated areas that have already been 
denuded due to declining water quality, rather than being in direct competition with 
seagrasses (41, 43, 44). C. taxifolia provides some habitat value for fish and 
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pipefish)) are absent from C. taxifolia (45, 46). Additionally, habitat preference studies 
indicate that fish spent significantly more time in seagrass than C. taxifolia, and this is 
likely due to a combination of structural, visual and chemosensory cues (45).   

The rhizome system of seagrasses is easily damaged by bait digging and boat propellers, 
and even moreso by larger scale removal activities, and if the meadows do recover from 
such disruption it can take a year or more (47). Unfortunately even low-level trampling 
(by tourists and educational parties) can have a long-lasting detrimental effect (48). 

Resilience to extreme events: the response to the floods of 2011 
Extreme events such as floods and cyclones can have sudden, large and potentially 
destructive effects on the structure and function and ultimately the ecosystem services 
of marine ecosystems (49). Coastal habitats such as seagrass are especially vulnerable 
to extreme events, particularly with increases in the likelihood of higher frequency and 
more intense storms in coastal areas of Queensland. 

In January 2011, a flood in the Brisbane River catchment, the largest in 37 years (50)  
discharged a significant tonnage of sediment into the Bay, reducing the Secchi disc 
depth (a measure of water clarity) to below 1 m in the western Bay from an average of 
2 m (51). The flood caused significant decreases in water quality in the Bay with 
approximately one million tonnes of sediment estimated to have been deposited 
following the flood (52).  
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northern Deception Bay reduced by approximately 50% following the flood (53). Other 
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following the flood. Loss of species diversity within near-shore meadows in Moreton 
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plastic species with a wide tolerance for changes in water quality (55).  

This plasticity was demonstrated by responses of Z. muelleri to the 2011 flood. The 
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water quality with light quality that often fluctuates below the minimum light 
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inhabiting areas of stable water quality and abundant light. Leaves are smaller and 
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characterised by undesirable environmental conditions, so once lost its absence can 
reduce the chances of recovery (61).  

At least three of the common feedbacks found in seagrasses worldwide have been shown 
to be present in Moreton Bay. Firstly, high density seagrass reduces near-bed water 
currents, reducing the physical stress on seagrass plants (3, 62). The above-ground 
structure of seagrass plants slows water movement across seagrass meadows, allowing 
suspended sediment and organic matter to fall out of the water column, becoming bound 
and assimilated by below-ground structures. Roots and rhizomes bind sediments thereby 
limiting resuspension and both processes improve water clarity. This feedback improves 
conditions for seagrass growth and ultimately seagrass depth range, which may account 
for some of the lack of linear relationship between water clarity and seagrass depth range 
at the sites across the Bay, as noted above (63). Following the 2011 flood, light quantity 
was significantly higher at sites with seagrass present than at adjacent unvegetated sites 
(55).  

Secondly, slowing water movement across the meadow also enables seagrass and its 
associated algal and microbial communities to sequester and incorporate dissolved 
inorganic nutrients (2, 64). In Moreton Bay, uptake rates of dissolved inorganic nitrogen 
in seagrass meadows following the 2011 flood were highest in meadows closer to the 
source of the flood (55). Nutrient uptake in unvegetated sites was lower than at all sites 
where seagrass was present (55). This suggests that the capacity for seagrasses in the 
Bay to assimilate nutrients from the water column, as elsewhere, is likely dependent on 
the above-ground meadow traits, (e.g. the length and density of shoots) and the extent 
of nutrient loading (2, 65).  

The vulnerability of seagrasses in the Bay to competition from micro- and macroalgae 
is also reduced by herbivore grazing rates (66). The seagrass canopy provides significant 
predation protection for meso-grazers (e.g. gastropods, amphipods, isopods and 
herbivorous fish) that graze on algae (67). Grazing rates were tested in Moreton Bay 
following the 2011 flood. Rates were significantly higher at seagrass meadows impacted 
by the flood (25% wet weight algae lost over three days compared to 10% at sites with 
lower flood impact). Rates were also much higher in seagrass-dominated sites generally 
than in unvegetated sites (5% loss of algal wet weight after three days) (55).  

When considered together, the strength of these three interacting feedbacks can be used 
to predict the likelihood of bistability (where ecosystems can theoretically exist in one 
of more states, such as bare or vegetated) in the Bay. A critical first step in integrating 
an understanding of non-linear dynamics into management plans for conserving and 
restoring the Bay’s seagrass ecosystems (61). While large-scale restoration is not yet 
considered practical, recent research suggests that seagrass restoration may actually be 
cost-effective for increasing seagrass extent in Moreton Bay (20). Emerging techniques 
for seagrass restoration have been used successfully over relatively large scales in other 
regions (68). Using a Bayesian Network, regions of the Bay have been assigned a 
likelihood of bistability due to the strength of the interacting feedback loops controlling 
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seagrass presence, as described above. Large sections of the intertidal and shallow 
subtidal areas of the western Bay, including southern Deception Bay, northern Bramble 
Bay and the southern Bay, were predicted to be bistable. Some of these areas have 
experienced seagrass loss since 1987 (69) most notably in southern Deception Bay and 
the southern Bay channels. These are therefore areas in the Bay where any natural 
recovery after the loss of seagrass is likely to be delayed due to the breakdown of the 
feedbacks controlling the presence of seagrass.  
 
Fish and invertebrate communities of seagrass meadows 
Seagrasses provide a significant habitat for a wide range of fauna, and are recognised 
globally as critical nursery habitats for commercially important fish and invertebrate 
species (1, 70). They are also recognised as hotspots for biodiversity (71), the effect of 
which increases with the size and proximity of seagrass meadows to other habitats (72, 
73). The fauna of seagrass meadows in Moreton Bay is dominated by invertebrates (74), 
fishes, turtles and dugongs, and these groups have been the focus of a substantial body 
of research, much of it published since the first synthesis on Moreton Bay. Although 
knowledge of where fauna assemblages in the Bay stand in relation to global seagrass 
assemblages is incomplete, and despite significant inroads into establishing an inventory 
of benthic invertebrates, changes to the faunal composition of the Bay’s seagrass 
meadows over time and across the multiple stressor gradients remain unknown.  

There are many factors that impact fauna assemblages in the seagrass meadows of 
Moreton Bay. For example,  current speed, light penetration to the seabed, and even the 
potential success rates of various predators could all influence the relative importance 
of species present in the Bay’s meadows. Surprisingly, the proportion of the total 
assemblage numbers in each functional group is effectively constant across at least 
small-scale space, e.g. over 0.4 ha of the Deanbilla Bay region of North Stradbroke 
Island (Fig. 4) (75).  

The larger animals in the seagrass meadows (e.g. the highly visible sea pens, sea 
cucumbers, strawberry cockles, sentinel and hermit crabs, and mud whelks) are well 
known. However, more than 250 smaller species (defined as <4 mm in at least one 
dimension) have also been recorded from the seagrass meadows of North Stradbroke 
Island and they dominate the fauna both numerically and ecologically (74). This ‘small 
animal’ category includes the two overwhelmingly abundant and most widespread 
elements of the seagrass fauna, the < 2 mm long gastropod Calopia imitata and the < 5 
mm crab Enigmaplax littoralis. Indeed, C. imitata is one of the most widely distributed 
and abundant snails in southern Moreton Bay, yet the biology and ecology of both 
species is still largely unknown (74, 76). 

The denser seagrasses of the Bay support two to three times as many individual animals 
and species per unit area as adjacent bare sandflats (77). The contrast is still apparent 
even in relatively sparse Halophila ovalis meadows. This general disparity in richness 
between the two habitats leads to concerns that any ongoing loss of seagrass meadows 
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characterised by undesirable environmental conditions, so once lost its absence can 
reduce the chances of recovery (61).  

At least three of the common feedbacks found in seagrasses worldwide have been shown 
to be present in Moreton Bay. Firstly, high density seagrass reduces near-bed water 
currents, reducing the physical stress on seagrass plants (3, 62). The above-ground 
structure of seagrass plants slows water movement across seagrass meadows, allowing 
suspended sediment and organic matter to fall out of the water column, becoming bound 
and assimilated by below-ground structures. Roots and rhizomes bind sediments thereby 
limiting resuspension and both processes improve water clarity. This feedback improves 
conditions for seagrass growth and ultimately seagrass depth range, which may account 
for some of the lack of linear relationship between water clarity and seagrass depth range 
at the sites across the Bay, as noted above (63). Following the 2011 flood, light quantity 
was significantly higher at sites with seagrass present than at adjacent unvegetated sites 
(55).  

Secondly, slowing water movement across the meadow also enables seagrass and its 
associated algal and microbial communities to sequester and incorporate dissolved 
inorganic nutrients (2, 64). In Moreton Bay, uptake rates of dissolved inorganic nitrogen 
in seagrass meadows following the 2011 flood were highest in meadows closer to the 
source of the flood (55). Nutrient uptake in unvegetated sites was lower than at all sites 
where seagrass was present (55). This suggests that the capacity for seagrasses in the 
Bay to assimilate nutrients from the water column, as elsewhere, is likely dependent on 
the above-ground meadow traits, (e.g. the length and density of shoots) and the extent 
of nutrient loading (2, 65).  
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predation protection for meso-grazers (e.g. gastropods, amphipods, isopods and 
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by the flood (25% wet weight algae lost over three days compared to 10% at sites with 
lower flood impact). Rates were also much higher in seagrass-dominated sites generally 
than in unvegetated sites (5% loss of algal wet weight after three days) (55).  

When considered together, the strength of these three interacting feedbacks can be used 
to predict the likelihood of bistability (where ecosystems can theoretically exist in one 
of more states, such as bare or vegetated) in the Bay. A critical first step in integrating 
an understanding of non-linear dynamics into management plans for conserving and 
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considered practical, recent research suggests that seagrass restoration may actually be 
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seagrass presence, as described above. Large sections of the intertidal and shallow 
subtidal areas of the western Bay, including southern Deception Bay, northern Bramble 
Bay and the southern Bay, were predicted to be bistable. Some of these areas have 
experienced seagrass loss since 1987 (69) most notably in southern Deception Bay and 
the southern Bay channels. These are therefore areas in the Bay where any natural 
recovery after the loss of seagrass is likely to be delayed due to the breakdown of the 
feedbacks controlling the presence of seagrass.  
 
Fish and invertebrate communities of seagrass meadows 
Seagrasses provide a significant habitat for a wide range of fauna, and are recognised 
globally as critical nursery habitats for commercially important fish and invertebrate 
species (1, 70). They are also recognised as hotspots for biodiversity (71), the effect of 
which increases with the size and proximity of seagrass meadows to other habitats (72, 
73). The fauna of seagrass meadows in Moreton Bay is dominated by invertebrates (74), 
fishes, turtles and dugongs, and these groups have been the focus of a substantial body 
of research, much of it published since the first synthesis on Moreton Bay. Although 
knowledge of where fauna assemblages in the Bay stand in relation to global seagrass 
assemblages is incomplete, and despite significant inroads into establishing an inventory 
of benthic invertebrates, changes to the faunal composition of the Bay’s seagrass 
meadows over time and across the multiple stressor gradients remain unknown.  

There are many factors that impact fauna assemblages in the seagrass meadows of 
Moreton Bay. For example,  current speed, light penetration to the seabed, and even the 
potential success rates of various predators could all influence the relative importance 
of species present in the Bay’s meadows. Surprisingly, the proportion of the total 
assemblage numbers in each functional group is effectively constant across at least 
small-scale space, e.g. over 0.4 ha of the Deanbilla Bay region of North Stradbroke 
Island (Fig. 4) (75).  

The larger animals in the seagrass meadows (e.g. the highly visible sea pens, sea 
cucumbers, strawberry cockles, sentinel and hermit crabs, and mud whelks) are well 
known. However, more than 250 smaller species (defined as <4 mm in at least one 
dimension) have also been recorded from the seagrass meadows of North Stradbroke 
Island and they dominate the fauna both numerically and ecologically (74). This ‘small 
animal’ category includes the two overwhelmingly abundant and most widespread 
elements of the seagrass fauna, the < 2 mm long gastropod Calopia imitata and the < 5 
mm crab Enigmaplax littoralis. Indeed, C. imitata is one of the most widely distributed 
and abundant snails in southern Moreton Bay, yet the biology and ecology of both 
species is still largely unknown (74, 76). 

The denser seagrasses of the Bay support two to three times as many individual animals 
and species per unit area as adjacent bare sandflats (77). The contrast is still apparent 
even in relatively sparse Halophila ovalis meadows. This general disparity in richness 
between the two habitats leads to concerns that any ongoing loss of seagrass meadows 
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in the Bay will result in decreases of animal abundance and biodiversity. Species 
composition and overall abundance of fauna is incredibly patchy in space, varying 
markedly even over distances of centimetres (78) with 42% of species represented by 
only one or two individuals. Despite this, the total number of individuals and species 
per unit area is remarkably consistent even over kilometres in the absence of 
environmental gradients.  

 

 
Figure 4. (a) Cumulative plots showing the effect of spatial extent on the 
proportion of the total individuals contained in each functional group across scales 
of 250 m2 (4 stations), 1,000 m2 (16 stations), 2,250 m2 (36 stations) and 4,000 m2 
(64 stations) (Adapted from (75)). Note that the proportion of the total individuals 
contained within each group is effectively constant. (b) The four most abundant 
and widespread animals in the intertidal North Stradbroke Island seagrass 
meadows (Figure reproduced from (74)). [Images: Calopia from 
australianmuseum.net.au/blogpost/amri-news/amri-seagrass-grazers-coming-out-
of-their-shells, © The Australian Museum; Enigmaplax and Pseudoliotia courtesy 
of and © Denis Riek (www.roboastra.com); Limnoporeia, reproduced here 
courtesy of Jim Lowry and Alan Myers through R Barnes) 
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Despite the contrast in animal diversity and abundance between seagrass beds and bare 
substrates, densities in Moreton Bay’s seagrasses are relatively low, < 4,000 individuals 
m-2 (79) compared with estimates in other regions (e.g. in the NW Atlantic) which can 
exceed 80,000 individuals m-2 (80). This is likely due to ‘top-down control’ exerted by 
all juvenile prawns and small fish that use them as nursery grounds (66).  

In Moreton Bay, the positioning of seagrass meadows throughout the seascape is a 
critical influence on the abundance and types of species that use them. Many of the 
commercially important fish species harvested in the Bay use seagrass meadows at some 
point throughout their life cycle, with key species like whiting initially settling in 
habitats adjacent to seagrasses before eventually moving into them (80). Larger numbers 
of fish and prawns use seagrass meadows that are nearer to mangroves than those further 
away (72, 82). This is likely due to the dietary benefit of organic matter derived from 
exported mangrove detritus for seagrass users. The effect is consistent despite variation 
in the density of the seagrass meadow suggesting that connectivity between habitat types 
is a greater influence than structural complexity of the meadow (83). This contrasts with 
findings in other regions that the density of seagrass residents is influenced by seagrass 
morphology, cover and size of the seagrass patch (84). In the Eastern Bay, fish species 
richness and assemblage composition are most influenced by the proximity of the 
meadow to the ocean exchange at the South Passage and to mangroves, with beta 
diversity (a measure of the number of distinct groups or communities) being most 
affected by the structure of the meadow (seagrass leaf length and shoot density) as well 
as the proximity to mangroves (83). 

The positive effect that proximity to receiving waters has on seagrass fish assemblages 
is also replicated in the river estuaries that drain into Moreton Bay. The distance of 
habitats within estuaries to both mangroves and the mouth of the estuary is a significant 
driver of fish community composition; however, the proximity of those habitats to 
seagrass is a more dominant influence (85) with sites in estuaries closer to seagrass 
patches always supporting more species and containing more individuals than those 
further away from seagrass. This highlights the importance of retaining the linkages 
between seagrass meadows and adjacent fish habitats in and around the mouths of 
estuaries in order to support commercial and recreational fisheries and biodiversity of 
the Bay as a whole (86, 87).  

Many seagrass inhabitants are either directly or indirectly consuming seagrass leaves or 
the epiphytic algae that grow on them. Grazing has been shown globally to be an 
important mediator of the structure and function of seagrass ecosystems (88). The 
feeding habits of the megaherbivores (e.g. green turtles and dugongs) in the Bay are 
relatively well known. Dugongs feed selectively to maximise their intake of the high 
nutrient, low fibre seagrass species such as H. ovalis (89) avoiding more extensive but 
more fibrous Z. muelleri. Dugongs have been shown to prevent the spread of Z. muelleri 
by intensively grazing areas such as the Eastern Banks and effectively cultivating areas 
for the preferred H. ovalis (89). Dugongs are found throughout the Bay (90, 91); 
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meadows (Figure reproduced from (74)). [Images: Calopia from 
australianmuseum.net.au/blogpost/amri-news/amri-seagrass-grazers-coming-out-
of-their-shells, © The Australian Museum; Enigmaplax and Pseudoliotia courtesy 
of and © Denis Riek (www.roboastra.com); Limnoporeia, reproduced here 
courtesy of Jim Lowry and Alan Myers through R Barnes) 
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Despite the contrast in animal diversity and abundance between seagrass beds and bare 
substrates, densities in Moreton Bay’s seagrasses are relatively low, < 4,000 individuals 
m-2 (79) compared with estimates in other regions (e.g. in the NW Atlantic) which can 
exceed 80,000 individuals m-2 (80). This is likely due to ‘top-down control’ exerted by 
all juvenile prawns and small fish that use them as nursery grounds (66).  

In Moreton Bay, the positioning of seagrass meadows throughout the seascape is a 
critical influence on the abundance and types of species that use them. Many of the 
commercially important fish species harvested in the Bay use seagrass meadows at some 
point throughout their life cycle, with key species like whiting initially settling in 
habitats adjacent to seagrasses before eventually moving into them (80). Larger numbers 
of fish and prawns use seagrass meadows that are nearer to mangroves than those further 
away (72, 82). This is likely due to the dietary benefit of organic matter derived from 
exported mangrove detritus for seagrass users. The effect is consistent despite variation 
in the density of the seagrass meadow suggesting that connectivity between habitat types 
is a greater influence than structural complexity of the meadow (83). This contrasts with 
findings in other regions that the density of seagrass residents is influenced by seagrass 
morphology, cover and size of the seagrass patch (84). In the Eastern Bay, fish species 
richness and assemblage composition are most influenced by the proximity of the 
meadow to the ocean exchange at the South Passage and to mangroves, with beta 
diversity (a measure of the number of distinct groups or communities) being most 
affected by the structure of the meadow (seagrass leaf length and shoot density) as well 
as the proximity to mangroves (83). 

The positive effect that proximity to receiving waters has on seagrass fish assemblages 
is also replicated in the river estuaries that drain into Moreton Bay. The distance of 
habitats within estuaries to both mangroves and the mouth of the estuary is a significant 
driver of fish community composition; however, the proximity of those habitats to 
seagrass is a more dominant influence (85) with sites in estuaries closer to seagrass 
patches always supporting more species and containing more individuals than those 
further away from seagrass. This highlights the importance of retaining the linkages 
between seagrass meadows and adjacent fish habitats in and around the mouths of 
estuaries in order to support commercial and recreational fisheries and biodiversity of 
the Bay as a whole (86, 87).  

Many seagrass inhabitants are either directly or indirectly consuming seagrass leaves or 
the epiphytic algae that grow on them. Grazing has been shown globally to be an 
important mediator of the structure and function of seagrass ecosystems (88). The 
feeding habits of the megaherbivores (e.g. green turtles and dugongs) in the Bay are 
relatively well known. Dugongs feed selectively to maximise their intake of the high 
nutrient, low fibre seagrass species such as H. ovalis (89) avoiding more extensive but 
more fibrous Z. muelleri. Dugongs have been shown to prevent the spread of Z. muelleri 
by intensively grazing areas such as the Eastern Banks and effectively cultivating areas 
for the preferred H. ovalis (89). Dugongs are found throughout the Bay (90, 91); 
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however, it is likely that the magnitude of their influence in shaping the structure and 
function of meadows in the western and southern Bay is reduced considering their 
numbers are generally low in those areas (2–5% of total population) (91). Consumption 
of seagrass by green turtle is likely to have a similar influence with simulated repeated 
grazing trials resulting in increased leaf regrowth of the preferred H. ovalis relative to 
ungrazed controls (92).  

The influence of fish and invertebrate herbivores on the structure and function of 
Moreton Bay seagrasses is less well known but efforts to understand that influence have 
increased in recent years. Seagrass is consumed by herbivorous fish in the Bay, 
particularly rabbit fishes (Family Siganidae), the juveniles of which have a preference 
for the dominant Z. muelleri (93). Similarly, small gastropods like the abundant nerite 
Smaragia souverbiana, also have a preference for Z. muelleri, directly targeting seagrass 
leaves and avoiding those with an excess epiphytic algal load (94). The ecological 
function of these seagrass-consuming gastropods is not well known in Moreton Bay but 
there is some evidence that they target the more fibrous and less digestible Z. muelleri 
due to lower phenol content, a metabolite know to deter grazers (95). Lower phenol 
content could also account for small fish grazers preferring Z. muelleri (96). This could 
represent something of a trade-off between phenol content and digestibility, a local-
scale process that could create more complicated seagrass–grazer interactions at a Bay-
wide scale.  

In contrast to direct seagrass consumption, other small fish and invertebrates inhabiting 
the Bay’s seagrass meadows target the epiphytic growth (both algal and otherwise) on 
seagrass leaves, thereby improving the light environment available for photosynthesis 
(97). The contribution of fish and invertebrates to seagrass and algal epiphyte dynamics 
is extensive with the exclusion of small meso-grazers such as amphipods and juvenile 
shrimp shown to increase epiphytic algae by 2.5 times at one site in Waterloo Bay (66). 
Small fish like leatherjackets (Family Monacanthidae) and sabre-toothed blennies 
(Family Blennidae) that are ubiquitous in the Bay’s meadows exert a similar, albeit 
lesser influence, on epiphytic algal biomass (35% and 15% reduction respectively in 
one 18-hour experiment) (97). The influence of these algal grazers in enhancing seagrass 
persistence is therefore likely to be substantial, particularly in the regions of Moreton 
Bay that have elevated nutrient loads (61).  
 
Conclusions and recommendations 
The understanding of the biology and ecology of seagrass meadows in Moreton Bay has 
come a long way since the previous Moreton Bay and Catchment book (10). In 1996, 
the focus of seagrass research in the Bay was on drawing attention to the declining extent 
and condition of the Bay’s meadows and a focus on the threats and stressors that need 
to be addressed to protect and enhance this valuable habitat. Since those studies, the 
region has been galvanised into action, with significant work being done to reduce the 
point-source nutrient loads entering the Bay. In the past 20 years we have seen 
significant recovery of seagrass meadows in the heavily impacted western embayments 
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of southern Deception Bay and more recently parts of Bramble Bay. While this is a 
positive step, the Bay’s seagrasses are still under considerable threat from urbanisation 
and land-use change in the catchment and the likely impacts of climate change. Our 
understanding of the organisms that inhabit the Bay’s seagrasses has improved 
significantly since 1998. However, we are unable to say without qualification what the 
existing extents of seagrasses are, how much they vary over temporal scales, and 
therefore we cannot quantify the economic, social and ecological value of seagrasses for 
the human community in the region. We need to further investigate the importance of 
the linkages between estuarine seagrass habitats and the meadows in the Bay and the 
causes of change in seagrass extent and condition, including the complex relationships 
between the effects of multiple stressors, so that management activities can target 
pressures.  
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however, it is likely that the magnitude of their influence in shaping the structure and 
function of meadows in the western and southern Bay is reduced considering their 
numbers are generally low in those areas (2–5% of total population) (91). Consumption 
of seagrass by green turtle is likely to have a similar influence with simulated repeated 
grazing trials resulting in increased leaf regrowth of the preferred H. ovalis relative to 
ungrazed controls (92).  

The influence of fish and invertebrate herbivores on the structure and function of 
Moreton Bay seagrasses is less well known but efforts to understand that influence have 
increased in recent years. Seagrass is consumed by herbivorous fish in the Bay, 
particularly rabbit fishes (Family Siganidae), the juveniles of which have a preference 
for the dominant Z. muelleri (93). Similarly, small gastropods like the abundant nerite 
Smaragia souverbiana, also have a preference for Z. muelleri, directly targeting seagrass 
leaves and avoiding those with an excess epiphytic algal load (94). The ecological 
function of these seagrass-consuming gastropods is not well known in Moreton Bay but 
there is some evidence that they target the more fibrous and less digestible Z. muelleri 
due to lower phenol content, a metabolite know to deter grazers (95). Lower phenol 
content could also account for small fish grazers preferring Z. muelleri (96). This could 
represent something of a trade-off between phenol content and digestibility, a local-
scale process that could create more complicated seagrass–grazer interactions at a Bay-
wide scale.  

In contrast to direct seagrass consumption, other small fish and invertebrates inhabiting 
the Bay’s seagrass meadows target the epiphytic growth (both algal and otherwise) on 
seagrass leaves, thereby improving the light environment available for photosynthesis 
(97). The contribution of fish and invertebrates to seagrass and algal epiphyte dynamics 
is extensive with the exclusion of small meso-grazers such as amphipods and juvenile 
shrimp shown to increase epiphytic algae by 2.5 times at one site in Waterloo Bay (66). 
Small fish like leatherjackets (Family Monacanthidae) and sabre-toothed blennies 
(Family Blennidae) that are ubiquitous in the Bay’s meadows exert a similar, albeit 
lesser influence, on epiphytic algal biomass (35% and 15% reduction respectively in 
one 18-hour experiment) (97). The influence of these algal grazers in enhancing seagrass 
persistence is therefore likely to be substantial, particularly in the regions of Moreton 
Bay that have elevated nutrient loads (61).  
 
Conclusions and recommendations 
The understanding of the biology and ecology of seagrass meadows in Moreton Bay has 
come a long way since the previous Moreton Bay and Catchment book (10). In 1996, 
the focus of seagrass research in the Bay was on drawing attention to the declining extent 
and condition of the Bay’s meadows and a focus on the threats and stressors that need 
to be addressed to protect and enhance this valuable habitat. Since those studies, the 
region has been galvanised into action, with significant work being done to reduce the 
point-source nutrient loads entering the Bay. In the past 20 years we have seen 
significant recovery of seagrass meadows in the heavily impacted western embayments 
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of southern Deception Bay and more recently parts of Bramble Bay. While this is a 
positive step, the Bay’s seagrasses are still under considerable threat from urbanisation 
and land-use change in the catchment and the likely impacts of climate change. Our 
understanding of the organisms that inhabit the Bay’s seagrasses has improved 
significantly since 1998. However, we are unable to say without qualification what the 
existing extents of seagrasses are, how much they vary over temporal scales, and 
therefore we cannot quantify the economic, social and ecological value of seagrasses for 
the human community in the region. We need to further investigate the importance of 
the linkages between estuarine seagrass habitats and the meadows in the Bay and the 
causes of change in seagrass extent and condition, including the complex relationships 
between the effects of multiple stressors, so that management activities can target 
pressures.  
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Abstract 
The mangroves and saltmarshes of Moreton Bay comprising 18,400 ha are important habitats 
for biodiversity and providing ecosystem services. Government policy and legislation largely 
reflects their importance with protection provided through a range of federal and state laws, 
including the listing of saltmarsh communities in 2013 under the Environment Protection and 
Biodiversity Conservation Act 1999 (EPBC Act). Local communities also conserve and 
manage mangroves and saltmarshes. Recent scientific research on these ecosystems in Moreton 
Bay has described food webs, habitat use by fauna, carbon sequestration and effects of climate 
change. The area of saltmarsh has declined by 64% since 1955 due to mangrove encroachment 
into saltmarsh habitats and past conversion to rural and urban land uses. Mangrove 
encroachment into saltmarsh habitats, which has been reported in other locations in Australia 
and across the world, has increased the area of mangrove habitat by 6.4% over the same period. 
This is consistent with predictions of habitat changes under climate change, and demonstrates 
the need for management strategies that ensure these ecosystems are maintained.  
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Introduction 
Mangroves and saltmarshes, which are components of the estuarine wetlands of Moreton Bay, 
are dominated by salt-tolerant vegetation that occurs from approximately mean sea level to the 
highest astronomical tidal plane. They occur within the river systems and tidal creeks of 
Moreton Bay as well as on the comparatively open coasts of the Bay where they fringe both 
islands and the mainland. Mangroves are distributed over the intertidal zone and can occur 
from approximately mean sea level to the elevation of the highest neap tides, with saltmarshes 
usually occurring at higher elevations up to the elevation of the highest astronomical tides (1). 
In 2012 mangroves covered 15,231ha and saltmarshes 3,171ha of the Moreton Bay area (Fig.1, 




