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INTRODUCTION

Coral reef seascapes are mosaics of seemingly dis-
jointed habitat that are functionally connected by the
movement and dispersal of organisms (Almany et al.
2009). Reefs lie within spatially heterogeneous sea -
scapes (Pittman et al. 2011) that include other com-
plex habitats, such as mangroves and seagrass. Reef
organisms utilise a range of non-reef habitats during
their lives, for example, as juvenile nurseries (e.g.
Nagelkerken 2009), for foraging and sheltering (e.g.
Valentine & Heck 2005) or for spawning and disper-
sal (e.g. Jones et al. 2009). The characteristics of the
seascape (e.g. composition, arrangement and prox-
imity of nearby habitats), therefore, can have a major

influence on the assemblages and population dy na -
mics of organisms that inhabit coral reefs (e.g.
Grober-Dunsmore et al. 2008). Connectivity between
habitats may also confer reefs with resilience
(Mumby & Hastings 2008), which is the capacity to
absorb recurrent natural perturbations and regener-
ate without slowly degrading or changing state
(Hughes et al. 2010). Consequently, maintaining con-
nectivity is now a focus for the management of mar-
ine reserves (McCook et al. 2009), and the protection
of seascapes with high connectivity is recommended
(e.g. Adams et al. 2006). However, the combined
effects of overfishing, declining water quality, habitat
loss and climate change have led to the degradation
of many coral reefs and may have fundamentally

© Inter-Research 2012 · www.int-res.com*Email: a.olds@griffith.edu.au

Primacy of seascape connectivity effects in
 structuring coral reef fish assemblages

Andrew D. Olds*, Rod M. Connolly, Kylie A. Pitt, Paul S. Maxwell

Australian Rivers Institute − Coast and Estuaries, School of Environment, Griffith University, Gold Coast, Queensland 4222, 
Australia

ABSTRACT: Connectivity has fundamental consequences for the productivity, persistence and
management of coral reefs. The area and position of adjacent mangroves and seagrass can affect
the demography of reef fish populations and the composition of reefal assemblages. To date, no
studies have attempted to partition the influences of these habitats on reef fish assemblages. We
used an exploratory seascape approach to separate the effects of connectivity with mangroves and
seagrass on reef fish in Moreton Bay, Australia. We then compared the performance of seascape
connectivity and reef complexity (i.e. coral cover, rugosity and area) in structuring these assem-
blages. Our results suggest a hierarchy of seascape connectivity effects, with reef fish assem-
blages being primarily distinguished by isolation (i.e. separation distance) from mangroves and
secondarily by proximity (an index incorporating habitat isolation and area) to seagrass. Impor-
tantly, measures of reef complexity were only useful in separating reef fish assemblages within
levels of connectivity with mangroves and seagrass. We demonstrate that neighbouring man-
groves and seagrasses can exert different effects on reef fish assemblages, with 25% of all species
being primarily influenced by mangroves and a different 25% being affected by seagrass. These
findings have important implications for the design of marine reserve networks. They show that
position in the seascape can be of greater significance than reef area or complexity to the compo-
sition of reef fish assemblages and highlight the value of incorporating seascape connectivity into
conservation planning.

KEY WORDS:  Landscape · Mangrove · Seagrass · Fish · Nursery · Australia

Resale or republication not permitted without written consent of the publisher

This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, 
except with written permission of the copyright holder(s). It may be distributed to interested individuals on request.



Mar Ecol Prog Ser 462: 191–203, 2012

altered connectivity within seascapes (Knowlton &
Jackson 2008, Bostrom et al. 2011). Accordingly,
there is now a pressing need for the application of
spatially explicit studies of connectivity in coral reef
ecosystems (Wilson et al. 2010).

Broadly speaking, connectivity is a function of
habitat area, quality and spatial arrangement and the
dispersal capabilities of individual species (Hodgson
et al. 2009). Landscape connectivity, which is the
physical connectedness of patches in a particular
landscape (Lindenmayer & Fischer 2007), can be
quantified using structural connectivity metrics,
which describe the spatial arrangement of habitats
from benthic habitat maps (Grober-Dunsmore et al.
2009). For example, Meynecke et al. (2008b) exam-
ined multiple connectivity metrics to determine that
wetland connectivity explained the greatest propor-
tion of variation in nearshore commercial fish catches
in Queensland, Australia. This approach is assumed
to provide reasonable surrogates for multi-species
conservation, and its inherent simplicity gives it
great appeal for conservation planning and assess-
ment (Calabrese & Fagan 2004).

The demographics of coral reef fish populations are
influenced by the composition of the seascape and
the spatial arrangement of habitat patches (reviewed
by Grober-Dunsmore et al. 2009). This seascape con-
nectivity can exert an influence across a range of
scales, from 100s of metres for diel and tidal feeding
movements (e.g. Grober-Dunsmore et al. 2007), to
10s of kilometres for ontogenetic migrations between
habitats (e.g. Mumby 2006) and up to 1000s of kilo-
metres for broader dispersal (e.g. Treml et al. 2008).
Its implications for reef fish are best understood for
the waters of the Caribbean, where the composition
of assemblages and population demography are
affected by linkages with seagrass (e.g. Grober-Dun-
smore et al. 2008) and mangrove (e.g. Mumby et al.
2004) habitats. These connections can also influence
other ecological aspects, namely the structure of reef
food webs (e.g. Heck et al. 2008), the value of non-
reef habitats as nurseries for juvenile reef fish (e.g.
Nagelkerken 2009), the ecological processes on both
reefs and adjacent habitats (e.g. Layman et al. 2007,
Dorenbosch et al. 2009) and the performance of mar-
ine reserves (e.g. Huntington et al. 2010, Olds et al.
2012). In contrast to the Caribbean, there have been
relatively few quantitative analyses of Pacific reef
seascapes (Nagelkerken 2007, but see Unsworth et
al. 2008 for an exception). Furthermore, no studies
have yet attempted to partition the influences of con-
nectivity with mangrove and seagrass habitats on the
composition of reef fish assemblages.

Here, we adopted an exploratory seascape ap -
proach (sensu Grober-Dunsmore et al. 2008) to exa -
mine how seascape connectivity with mangrove and
seagrass habitats affects reef fish assemblages in the
Moreton Bay Marine Park in eastern Australia. Then,
we contrasted the roles of seascape connectivity and
reef complexity (i.e. coral cover, rugosity and area) in
the composition of these assemblages. Moreton Bay
is a large subtropical embayment south of the Great
Barrier Reef (GBR) and adjacent to the city of Bris-
bane. It supports marginal, fringing coral reefs (Ly -
bolt et al. 2011), dominated by massive Favia, Goni-
astrea and Goniopora colonies (Wallace et al. 2009).
These reefs occur within a heterogeneous seascape
that supports abundant adjacent seagrass and neigh-
bouring mangroves (Stevens & Connolly 2005) and
provide a useful study area for examining the role of
seascape connectivity in structuring reef fish assem-
blages. We tested the hypotheses (1) that connectiv-
ity with neighbouring mangroves and seagrass will
affect different components of the reef fish assem-
blages and (2) that the effects of seascape connectiv-
ity will exceed those of reef complexity in structuring
fish abundance in Moreton Bay. We anticipated man-
groves to affect the abundance of snappers (Lut-
janidae), groupers (Serranidae) and bream (Spari-
dae) on reefs and expected seagrass to influence the
abundance of sweetlip (Haemulidae), emperors
(Lethrinidae), parrotfish (Scaridae) and rabbitfish
(Siganidae) (based on Nagelkerken 2009, Sheaves
2009, Unsworth & Cullen 2010).

MATERIALS AND METHODS

Seascape analysis

We surveyed the fish and benthic assemblages of
16 fringing reefs in central Moreton Bay (Fig. 1), Aus-
tralia (27° 15’ S, 153° 15’ E), between December 2009
and April 2010. Seascape connectivity was quantified
from existing benthic habitat maps for Moreton Bay
(source: Queensland Department Environment and
Resource Management) using ArcGIS (Environmen-
tal Systems Research Institute). Coral reefs, mangrove
forests and seagrass meadows in the region have
been mapped to a depth of 10 m based on field sur-
veys and interpretation of satellite and aerial imagery,
at a spatial resolution of 500 m2 (e.g. Dowling &
Stephens 2001, Roelfsema et al. 2009). Deeper ben -
thic assemblages (to 50 m) have been field mapped at
a coarser (5 km) scale (Stevens & Connolly 2005).
These differences in map scale preclude the calcula-
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tion of spatial metrics across shallow and deep assem-
blages (sensu Kendall et al. 2011), and we focus on
connectivity between shallow reefs, mangroves and
seagrass. Seagrass communities support a heteroge-
neous mix of species but are dominated by Zostera
muelleri (Skilleter et al. 2005). Sparse seagrass in the
region declined in both cover and areal extent during
the period between mapping and fish surveys (Lyons
et al. 2011); consequently, all seagrass with <25%
cover (cf. Roelfsema et al. 2009) was omitted from the
analysis. Mangrove forests are dominated by Avicen-
nia marina, with similar composition and tidal inun-
dation across most sites surveyed (Olds et al. 2012);
however, rubble banks (resulting from the prior ex-
traction of limestone) have altered the bathymetry at

Mud and St Helena islands (Johnson &
Neil 1998). Five spatial pattern metrics
(Fig. 2) (reviewed by Wedding et al.
2011) were used to describe connectiv-
ity in reef seascapes: (1) isolation, the
edge-to-edge distance from reefs to
nearest habitats (Moilanen & Nie -
minen 2002), (2) area, the area of
neighbouring habitats within kernels
centred on each reef (Moila nen &
Nieminen 2002), (3) proximity index,
which incorporates the isolation and
area of neighbouring habitats within
kernels centred on each reef (McGari-
gal et al. 2002), (4) con nect ivity index,
which incorporates the isolation and
area of both reefs and neighbouring
habitats within kernels centred on
each reef (Kindlmann & Burel 2008)
and (5) length of the connected edge
(LCE), the length of shared edges con-
necting reefs and adjacent habitats
(McGarigal et al. 2002).

Importantly, seascape studies need
be scaled to the mobility of the species
of interest (Grober-Dunsmore et al.
2009). We adopted a multi-scale ana-
lytical approach (sensu Pittman &
Brown 2011), which is appropriate
when there is insufficient information
on movement and habitat use patterns
and it is likely that species respond to
seascape structure at different scales.
We quantified connectivity metrics at
scales of 250, 500 and 1000 m in ker-
nels centred on each reef survey loca-
tion (Figs. 1 & 2). These scales were
chosen to encompass the daily home

ranges of many adult bream, emperor, grouper, par-
rotfish, rabbitfish and snapper, which are large resi-
dent components of the fish assemblages of coral reef
seascapes in the western Pacific (e.g. Sheaves 1993,
Zeller et al. 2003, Chateau & Wantiez 2009, Fox &
Bellwood 2011). Ideally, home ranges of other species
would also be included when selecting a spatial con-
text, but movement data are lacking for other fish
families in the region. The minimum scale for calcu-
lating connectivity metrics (i.e. kernel radii of 250 m)
was restricted by the size of fish survey transects. It
was not possible to examine seascape connectivity at
larger scales to encompass ontogenetic shifts be -
tween juvenile nurseries (sensu Beck et al. 2001) and
reef habitats (i.e. 10s of kilometres) (e.g. Nagel -
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Fig. 1. Coral reef, seagrass and mangrove habitats of central Moreton Bay,
Australia. Survey locations depicted as black dots over coral reef habitat. C:
Coochiemudlo Island; G: Green Island; M: Mud Island; N: North Stradbroke
Island; P: Peel Island; and S: St Helena Island. Insets: detailed seascapes and 

positioning of kernels around (A) Myora and (B) Horseshoe reefs
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kerken 2009). The close proximity of reefs in the
study area resulted in substantial overlap in the area
of nursery habitats adjacent to reefs. This homo gen -
ised nursery connectivity metrics among sites at this
broader (10s of kilometres) scale.

Fish surveys

Coral reef fish were surveyed using underwater vi-
sual census (UVC) (following Fulton et al. 2001). Five
replicate 50 × 4 m belt transects were censused at
each site within 2 h of low tide, when intertidal man-
groves and seagrass were dry and not accessible and
fish were concentrated over subtidal reefs. Transects
were positioned in series along each reef and sepa-
rated by a minimum of 50 m (Fig. 2). Each census con-
sisted of a diver swimming parallel to the reef slope
and recording the species and abundance of all fish
with total length (TL) > 5 cm. All transects were sur-
veyed by the same diver and positioned at depths of 1
to 3 m below the lowest astronomical tide. We exam-
ined the influence of seascape and coral reef variables
on the composition of fish assemblages and assessed
their effects on distribution of individual species to
provide support for trends at the assemblage level.

Benthic habitat assessments

Coral reef rugosity and coral cover are important
drivers of spatial variation in reef fish assemblages
(e.g. Wilson et al. 2007) and were surveyed along the
same belt transects used to quantify fish abundance,
to describe intra-habitat variation in reef habitat
among locations. Benthic assemblages were quanti-
fied by taking digital photographs of the benthos
every 2 m along each transect from 0.5 m above the
substrate (Fig. 2). Photographs were taken with a
Canon Powershot digital camera in an Ikelite hous-
ing with an ultra wide-angle lens. Digital images
were analysed for benthic cover using Coral Point
Count v3.6 (Kohler & Gill 2006). A grid of 25 points
was randomly overlaid on each 1 m2 image, and the
substrate underlying each point was classified as
hard coral, soft coral, macroalgae, epilithic algae
matrix (EAM), crustose coralline algae, coral rubble
or sand. This broad classification precludes the de -
tection of any relationships between fish assem-
blages and coral species composition; however, it
was deemed appropriate for the fringing reefs of
Moreton Bay, which support low coral diversity and
are dominated by massive corals (Johnson & Neil
1998, Wallace et al. 2009, Lybolt et al. 2011). Rugosity
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Fig. 2. Conceptual diagrams illustrating the sampling design (i.e. positioning of kernels around reefs and the nested scales of
sampling) and the difference between seascape connectivity metrics (i.e. isolation, area, proximity index, connectivity index
and length of the connected edge) (Symbols courtesy of the Integration and Application Network, ian.umces.edu/symbols/)

A
ut

ho
r c

op
y



Olds et al.: Primacy of seascape connectivity effects

was assessed using the ‘chain-link method’ (Luck-
hurst & Luckhurst 1978). Briefly, a 6 m chain was
draped over the substrate every 10 m along each
transect to follow the natural reef contour (Fig. 2).
Rugosity (r) was calculated as the ratio of distance
along the reef surface contour (CD) to linear horizon-
tal distance (LD) using r = CD/LD.

Data analysis and distribution modelling

Distributions of all recorded reef fish species were
examined for relationships with seascape and coral
reef variables using boosted regression trees (BRTs)
(sensu Pittman & Brown 2011). BRTs are non-para-
metric machine learning algorithms that provide for
sophisticated regression analyses of complex re -
sponses and are optimised for high predictive per-
formance (Elith et al. 2008). This technique differs
from conventional regression in that, rather than fit-
ting a single ‘best’ model, it fits an ensemble of simple
regression tree models by iteratively fitting new trees
to the residual errors of their predecessors (De’ath
2007). BRTs provide superior predictive performance
over conventional modelling techniques, such as
 generalised additive models and linear regression
(Knudby et al. 2010). They can fit non- linear relation-
ships and are robust to colinearity among predictors,
their power is not reduced by the presence of irrele-
vant variables, and they can model interaction and
threshold effects (Pittman et al. 2009). This enables
the data for each species to be analysed in a single
model that includes all predictor variables across the 3
spatial scales. Models were implemented using the R
dismo software package (R Core Development Team
2012) and optimised with slow learning rates (0.0001
to 0.001) and low tree complexities (2 to 4), using 10-
fold cross-validation (CV) (following Elith & Leathwick
2011) (Appendix 1). Predictor variables used to model
fish distributions included reef complexity variables
(i.e. coral cover, reef rugosity and reef area), seascape
connectivity metrics (i.e. isolation, area, proximity,
connectivity and LCE of mangroves and seagrass)
and location (to account for the spatial structure of
sites around islands). Inter action strength was esti-
mated using the techniques of Elith et al. (2008). The
relative contribution (%) of predictor variables to the
model’s predictive power and the overall patterns in
fish abundance was determined using the variable
importance score (Elith et al. 2008). Model discrimina-
tion was assessed using the area under the receiver
operating characteristic curve (AUC) statistic. We fol-
lowed Pittman and Brown (2011) and considered

AUC values of >0.9 outstanding, 0.8−0.9 excellent,
0.7−0.8 acceptable and a value of 0.5 as the predictive
ability that could be achieved by chance alone.

Fish assemblage data were examined using the
BEST and LINKTREE procedures with PRIMER
(PRIMER-E). The BEST routine was used to identify
seascape and coral reef variables that best explained
patterns of similarity in reef fish assemblages (Clarke
et al. 2008). Relationships between these variables
and fish assemblages were then further examined
using the LINKTREE test, which constructs a hierar-
chical dendrogram to relate environmental variables
and patterns in assemblage composition, with each
division being characterised by one or more variables
that appear responsible for discriminating different
assemblage groupings (Clarke et al. 2008). LINK-
TREE maximises the degree of separation between
the 2 groups of samples formed at each division using
the ANOSIM R statistic. Groups are, therefore,
defined by similarities in their assemblage structure
and separated by inequalities in associated environ-
mental variables. Coherent groups of samples in the
dendrogram were defined by SIMPROF tests at a sig-
nificance level of 0.01. SIMPROF is a permutation
test (we used 999 permutations) for evidence of mul-
tivariate structure among samples in clusters with no
a priori grouping (Clarke et al. 2008). Analyses were
applied to Bray-Curtis similarity matrices calculated
on square-root transformed abundance data. Vari-
ables included in the environmental data matrix
were the area of coral reef, reef rugosity, coral cover,
reef isolation from mangroves and reef proximity to
seagrass. Connectivity metrics were chosen on the
basis of their performance in describing patterns in
species abundance. The similarity matrix of environ-
mental variables was calculated using normalised
Euclidean distances.

RESULTS

Reef fish species and seascape connectivity

BRT provided acceptable (or better) model predic-
tions for the distribution of 28 fish species (Table 1).
Reef complexity variables were important predictors
for the distribution of 14 species, including 5 butter-
flyfish (Chaetodontidae), 2 surgeonfish (Acanthu ri -
dae), 2 wrasse (Labridae), 2 damselfish (Pomacen -
tridae), a cardinalfish (Apogonidae), a morwong
(Chei lo dactylidae) and a threadfin bream (Nemi -
pteridae). Coral cover was of primary importance to
all species and contributed between 23% (Apogon li-
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menus) and 69% (Thalassoma lunare) to the distribu-
tion of each species. Reef rugosity was of secondary
importance for 9 species (contributing 10 to 25%).
Reef area (at the 500 and 1000 m scales) was also sig-
nificant to 3 species (contributing 10 to 16%). In addi-
tion to reef effects, seagrass connectivity (i.e. area,
isolation, LCE and proximity) was of low importance
(contributing <15%) to 5 species. Most species
demonstrated a clear preference for reefs with high
coral cover and rugosity (e.g. Acanthurus dussumieri;
Fig. 3), but reef area and distance to seagrass were
also of lesser importance to several fish. The effects of
coral cover on reef fish abundance occurred over a
narrow threshold, and abundance typically increased
with coral cover between 10 and 30% (Fig. 3).

Connectivity with mangroves (at the 500 and 1000
m scales) was most important to the distribution of 7
reef fish species (Table 1). These included 2 snappers
(Lutjanidae), a hardyhead (Atherinidae), a silver-
biddy (Gerridae), a grouper (Serranidae), a rabbitfish
(Siganidae) and a bream (Sparidae). Mangrove con-
nectivity (i.e. separation distance and area of both
habitats) was most important to 4 species and con-
tributed between 35% (Epinephelus coioides) and
53% (Atherinomorus vaigiensis) to fish distributions
on the reef. Mangrove isolation was also important
for 4 species (contributing 11 to 33%), and mangrove
area was significant to Lutjanus fulviflamma (con-
tributing 23%). Reef complexity (i.e. coral cover and
reef rugosity) was less important for all species (con-
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Species                                           Family              AUC        Predictor 1     Predictor 2        Predictor 3             Interactions

Reef influence                                                                                                                                                                   
Abudefduf bengalensis         Pomacentridae       0.860          CC (34)           CR (20)            SP500 (11)                        
Acanthurus dussumieri          Acanthuridae        0.707          CC (40)           CR (12)                                                    
Apogon limenus                       Apogonidae         0.867          CC (23)           CR (13)            SP500 (10)                        
Chaetodon auriga                 Chaetodontidae      0.826          CC (39)                                                                           
Chaetodon flavirostris          Chaetodontidae      0.886          CC (54)                                                                CC & MI (1.9)
Chaetodon melannotus        Chaetodontidae      0.833          CC (31)           CR (21)           SL1000 (11)                       
Chaetodon plebeius              Chaetodontidae      0.824          CC (40)           CR (25)                                                    
Cheilodactylus vestitus        Cheilodactylidae     0.881          CC (38)           CR (17)            SP500 (14)           CR & SP500 (1.5)
Chelmon rostratus                Chaetodontidae      0.891          CC (28)           CR (21)           CA1000 (13)                       
Choerodon schoenleinii              Labridae            0.704          CC (30)            SI (15)            SA1000 (12)                       
Parma oligolepis                    Pomacentridae       0.904          CC (27)         CA500 (16)                                   CC & SA1000 (1.6)
Pentapodus paradiseus          Nemipteridae        0.708          CC (31)        CA1000 (10)           CR (10)              CC & CR (2.0)
Prionurus microlepidotus       Acanthuridae        0.715          CC (33)           CR (11)                                      CC & SP500 (1.1)
Thalassoma lunare                      Labridae            0.903          CC (69)                                                              CC & SC250 (2.3)

Mangrove influence                                                                                                                                                        
Acanthopagrus australis             Sparidae            0.860        MC500 (36)         MI (11)              CC (11)        MC500 & MA500 (3.4)
Atherinomorus vaigiensis        Atherinidae         0.847        MC500 (54)         MI (18)                                                    
Epinephelus coioides                Serranidae          0.827       MC1000 (35)        MI (11)              CC (10)                         
Gerres subfasciatus                    Gerridae            0.927           MI (33)         MC500 (13)           CC (12)             MI & CR (10.4)
Lutjanus fulviflamma                Lutjanidae          0.895        MA500 (23)         CR (13)            SL250 (11)                        
Lutjanus russelli                        Lutjanidae          0.892       MC1000 (35)        CC (13)           MC500 (11)           CC & CR (1.4) 
                                                                                                                                                                            MC1000 & CC (1.1)
Siganus fuscescens                    Siganidae           0.871        MC500 (24)         MI (13)              CC (11)                         

Seagrass influence                                                                                                                                                           
Choerodon cephalotes                Labridae            0.728         SP500 (24)       SA1000 (12)         CA500 (11)                       
Diagramma labiosum               Haemulidae         0.820        SP1000 (24)         CR (13)                                                    
Lethrinus laticaudis                  Lethrinidae         0.878        SP1000 (39)      SA1000 (18)           CC (11)                         
Lethrinus nebulosus                 Lethrinidae         0.837        SL1000 (35)          SI (15)              CC (14)                         
Monacanthus chinensis        Monacanthidae      0.823         SP500 (29)       SA1000 (15)           CC (14)            SP500 & CC (8.5)
                                                                                                                                                                               CC & CR (3.5)
Scarus ghobban                           Scaridae            0.865           SI (33)            CC (11)           SA1000 (10)                       
Sphyraena obtusata                Sphyraenidae        0.862         SP500 (57)          CR (11)                                       SP500 & CR (7.0)

Table 1. Important seascape connectivity and reef complexity metrics contributing to boosted regression tree (BRT) models of
reef fish distribution, contributions of each predictor (%) and pairwise interactions between predictor variables. AUC: area un-
der the receiver operating characteristic curve; CA: reef area; CC: coral cover; CR: reef rugosity; MA: mangrove area; MC:
mangrove connectivity; MI: mangrove isolation; SA: seagrass area; SI: seagrass isolation; SL: seagrass length of connected
edge (LCE); SP: seagrass proximity. Subscript numbers denote scale (metres). Only species with fitted models with acceptable
predictive performance (i.e. AUC ≥ 0.7) are reported; all predictor variables that contributed >10% to BRT models are re-
ported. Interaction values indicate degree of departure from additive effects, with zero indicating no interaction is present; 
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tributing <13%). The LCE of reef with seagrass was
also important to L. fulviflamma (contributing 11%).
The distribution of these mangrove-influenced spe-
cies was centred on reefs with high connectivity to
adjacent mangroves, and reef complexity was less
important (e.g. Lutjanus russelli; Fig. 3). The effects
of mangroves on reef fish abundance were manifest
across a narrow threshold, and abundance declined
sharply as mangrove isolation increased from 350 to
500 m.

Connectivity with seagrass (at the 500 and 1000 m
scales) was most important to the distribution of 7
species on reefs (Table 1). These included 2 emperors
(Lethrinidae), a sweetlip (Haemulidae), a tuskfish
(Labridae), a leatherjacket (Monacanthidae), a par-
rotfish (Scaridae) and a barracuda (Sphyraenidae).
Seagrass proximity (i.e. separation distance and area
of seagrass) was primarily important to 5 species and
contributed between 24% (Diagramma labiosum)
and 57% (Sphyraena obtusata) to fish distributions on

the reef. Seagrass area (at 1000 m) was
important for 4 species (contributing
12 to 18%), seagrass isolation was sig-
nificant for 2 species (contributing 15
to 29%), and seagrass LCE was im -
portant (contributing 35%) to the dis-
tribution of Lethrinus nebulosus. Reef
complexity was less important for all
species (contributing <14%). The dis-
tribution of these seagrass-influenced
species was centred on reefs with high
connectivity to adjacent seagrass, and
reef complexity was less important
(e.g. Scarus ghobban; Fig. 3). The
effects of seagrass on reef fish abun-
dance operated across a small range,
with fish abundance increasing rap-
idly within 250 m of seagrass (Fig. 3).

Interactions between reef complexity
and seascape connectivity predictors
led to a more ecologically meaningful
understanding of how multiple pre -
dictors interact to determine habitat
suitability. Interactions were  common
among related seascape connectivity
metrics (i.e. area and con nect ivity in-
dex) and reef complexity variables (i.e.
coral cover and reef rugosity). Aside
from this expected outcome, the mod-
els for Gerres subfasciatus, Monacan-
thus chinensis and S. obtusata involved
the strongest interactions among pre-
dictors (Table 1). Interactions occurred

between mangrove isolation and reef rugosity for G.
subfasciatus, seagrass proximity and coral cover for
M. chinensis and seagrass proximity and reef rugosity
for S. obtusata. Interactions were relatively weak for
the other species examined. Fish were characterised
as reef-, mangrove- or seagrass-influenced species on
the basis of BRT models (see Table 1). These cate-
gories were also used for interpretation of assemblage
analyses.

Reef fish assemblages and seascape connectivity

Connectivity across the reef seascape correlated
well with the overall composition of reef fish assem-
blages. Assemblages were best explained by their
isolation from mangroves and coral cover at a scale of
250 m (BEST R value = 0.373, p = 0.01) and by their
isolation from mangroves, proximity to seagrass and
coral cover at scales of 500 (R = 0.520, p = 0.01) and
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Fig. 3. Functions fitted in boosted regression trees (BRT) models relating the
distribution of Acanthurus dussumieri, Lutjanus russelli and Scarus ghobban
to the most important seascape connectivity and reef complexity metrics. The
relative importance (percentage contribution) of each variable to BRT models
is shown in parentheses on the x-axis (fish illustrations sourced from 
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1000 m (R = 0.441, p = 0.01). Importantly, the maxi-
mum assemblage correlation (i.e. greatest R value)
occurred at a scale of 500 m, and this provided the
focus for subsequent LINKTREE analyses.

LINKTREE analysis produced a 7-leaf dendrogram
to describe the influence of environmental variables
(i.e. connectivity and reef complexity metrics) on the
composition of reef fish assemblages (Fig. 4). Overall,
the analysis demonstrated strong agreement with the
BEST analyses but also illustrated a hierarchy in the
relative importance of seascape connectivity and reef
complexity variables. Highest order divisions among
fish assemblages reflected isolation from mangroves,
middle order splits related to proximity to seagrass,
and all lower order partitions correlated with reef
habitat variables (refer to coloured separations in
Fig. 4). This suggests that reef fish assemblages in
Moreton Bay were characterised first by their isola-
tion from mangroves and then by their proximity to
seagrass. This is visualised by the separation of sites
into clusters based on their spatial relationship with

both mangroves and seagrass. For example, reef fish
assemblages at 4 sites (M2, S1, P1 and P4) were dis-
tinguished by being close to mangroves (<250 m)
and far from seagrass (Fig. 4: high mangroves, low
seagrass clusters). Assemblages at 3 sites (N1, C2
and G2) were characterised by being close to man-
groves and close to large seagrass meadows (Fig. 4:
high mangroves, high seagrass clusters) (site N1 was
closer to a larger seagrass meadow). In contrast,
assemblages at 4 sites (C1, C3, G1 and P5) were dis-
tinguished by being far from mangroves (>500 m)
and close to large seagrass beds (Fig. 4: low man-
groves, high seagrass clusters) (site C1 was further
from mangroves and closer to a larger seagrass
meadow). Assemblages at 5 sites (M1, S2, G3, P2 and
P3) were characterised by being far from mangroves
and far from seagrass (Fig. 4: low mangroves, low
seagrass clusters).

Reef complexity (i.e. reef area and coral cover) had
a lesser effect than seascape connectivity on the com-
position of reef fish assemblages (i.e. these variables
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were responsible for splits lower on the dendrogram)
but had a greater influence on reefs further from
mangroves (Fig. 4). The magnitude of this effect is
visualised in Fig. 4 using pie charts, which represent
the proportion of total fish abundance comprised of
mangrove-, seagrass- and reef-influenced species.
There were clear differences in assemblage composi-
tion among locations with different levels of connec-
tivity with mangroves and seagrass, but little varia-
tion among locations on the basis of differences in
coral cover or reef area.

DISCUSSION

The importance of adjacent habitats to reef fish
populations has long been recognised. Early studies
examined the ecology of off-reef feeding migrations
(e.g. Randall 1965); more recently, research has
focused on the role of seascape ecology in structuring
reef fish assemblages (Grober-Dunsmore et al. 2009).
Our findings show that there is a hierarchy in the cor-
relation of reef fish assemblages with seascape con-
nectivity. The composition of reef fish assemblages in
Moreton Bay is primarily distinguished by their isola-
tion from mangroves, secondarily by their proximity
to seagrass, and only by reef habitat variables within
each level of seascape connectivity. This result sup-
ports studies from the Caribbean, which have shown
that the abundance, biomass and richness of reef fish
species can be influenced by linkages with adjacent
seagrass (e.g. Valentine et al. 2007, Nagelkerken et
al. 2008) and mangrove habitats (e.g. Mumby et al.
2004, Nagelkerken 2007). It agrees with the conclu-
sions of Grober-Dunsmore et al. (2008), who found
that the area of neighbouring seagrass was more
important to reef fish abundance than reef complex-
ity. It also supports the findings of Pittman & Brown
(2011), who demonstrated that a reef’s cross-shelf
location can be more important to fish distributions
than its topographic complexity. This finding cau-
tions against management approaches that seek to
conserve fish assemblages by focusing on reef struc-
tural complexity and is particularly relevant to the
broader utility of remotely sensed fish-habitat rela-
tionships in coral reef ecosystems (reviewed by
Mellin et al. 2009). We provide evidence that man-
grove and seagrass habitats can indeed exert differ-
ent effects on reef fish assemblages. This is manifest
through species-specific relationships with different
habitats and scales of seascape connectivity. Conse-
quently, the magnitude of these effects might be
expected to vary across different seascapes. In par-

ticular, reef habitat variables might be more impor-
tant on reefs that are more isolated or support greater
coral diversity. However, we hypothesise that their
effects may also be additive, with reefs in highly het-
erogeneous seascapes with high connectivity to both
mangrove and seagrass habitats and high coral cover
supporting greatest fish diversity and abundance. To
strengthen this evidence for connectivity, we would
ideally have also examined reefs lacking adjacent
mangroves and seagrass, but this arrangement of
habitats was not present in the studied system. Nev-
ertheless, our findings support recommendations for
adopting multi-scale hierarchical approaches when
characterising the environmental drivers of reef fish
biomass and diversity (e.g. MacNeil et al. 2009,
Mellin et al. 2010a, Pittman & Brown 2011). They
have obvious implications for how we visualise con-
nectivity in reef seascapes and important ramifica-
tions for how connectivity is coalesced into a man-
agement framework that seeks to both promote
connectivity (Steneck et al. 2009) and enhance reef
resilience (Hughes et al. 2010). This assertion is sup-
ported by recent findings that fish assemblages on
small, isolated reefs may have higher temporal vari-
ability and lower resilience than those from larger,
more connected reefs (Mellin et al. 2010b).

Our results imply that the principles of landscape
ecology (sensu Forman & Godron 1986), which have
been applied in the reef seascapes of the Caribbean,
warrant further investigation in the Pacific region.
The spatial context of reefs relative to mangrove and
seagrass habitats is important for the composition of
reef fish assemblages in the Caribbean and Indian
Ocean (reviewed by Grober-Dunsmore et al. 2009,
Berkström et al. 2012), but there have been few com-
parable quantitative analyses on Pacific reefs (Nagel -
kerken 2007). Beger & Possingham (2008) deter-
mined that isolation from the nearest estuary was a
good predictor of reef fish distribution in Papua New
Guinea. Similarly, Olds et al. (2012) demonstrated
that connectivity with mangroves promoted the abil-
ity of marine reserves in Moreton Bay to enhance fish
abundance. The focus of other studies in the Pacific,
however, has been on assemblages in the seagrass
(e.g. Jelbart et al. 2007, Unsworth et al. 2008) and
mangrove (e.g. Pittman et al. 2004, Payne & Gillan-
ders 2009) habitats themselves. Our results suggest
that seascape influences in the Pacific may affect reef
fish from the same families as in the Caribbean (i.e.
Haemulidae, Lutjanidae and Scaridae) (e.g. Nagelk-
erken 2007). It seems logical, therefore, that seascape
connectivity may also structure ecological processes
(e.g. Mumby & Hastings 2008) and food webs (e.g.
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Heck et al. 2008, Nagelkerken et al. 2008) on Pacific
reefs. However, given the geographic imbalance in
studies of seascape connectivity (Nagelkerken 2007),
there is now a need for further research testing the
validity of these concepts across the wider Pacific.
Furthermore, our results illustrate thresholds in the
effects of mangrove and seagrass connectivity on
reef fish abundance, with dramatic changes in fish
abundance occurring with small decreases in man-
grove (from 350 to 500 m) and seagrass (below 250
m) isolation. These thresholds concur with the scale
at which diel and tidal connectivity is known to influ-
ence reef fish assemblages in the tropical Caribbean
and Indian Ocean (e.g. Bostrom et al. 2011, Berk-
ström et al. 2012) and have important implications for
conservation planning and marine reserve design
(sensu Olds et al. 2012).

For reefs in Moreton Bay, the primacy of mangrove
connections over seagrass linkages and the perform-
ance of different metrics in describing these connec-
tions (i.e. isolation and connectivity with mangroves
and proximity to seagrass) point to differences in
their roles as fish habitat. Mangroves in Moreton Bay
are used tidally by adult and sub-adult mangrove-
influenced reef fish but support few juveniles of
these species (e.g. Tibbetts & Connolly 1998, Olds et
al. 2012). Blackspot snapper Lutjanus fulviflamma,
moses snapper L. russelli and goldspotted rockcod
Epinephelus coioides recruit to mangrove-lined
creeks and shallow reefs as juveniles and migrate
tidally to feed in mangroves before moving to off-
shore reefs at larger body sizes (e.g. Blaber 2000,
Sheaves & Molony 2000, Newman 2002, Meynecke
et al. 2008a). Juvenile L. fulviflamma are also com-
mon in seagrass (Igulu et al. 2011). Yellowfin bream
Acanthopagrus australis and black rabbitfish Siga -
nus fuscescens recruit to seagrass, move to reefs (and
other structurally complex habitat) as sub-adults (e.g.
Griffiths 2001, Mellin et al. 2007, Meynecke et al.
2008a) and migrate tidally to feed in mangroves in
Moreton Bay (Olds et al. 2012). Common hardyhead
Atherinomorus vaigiensis and common silverbiddy
Gerres subfasciatus also migrate tidally into man-
groves to feed and seek refuge from predators (e.g.
Laegdsgaard & Johnson 2001). These fish use tidal
streams to maximise time at the mangrove fringe, a
pattern of mangrove use that is common for large
mobile fish in tidal systems the world over (e.g.
Sheaves 2009). Juvenile seagrass-influenced reef
fish are common in seagrass adjoining the reefs in
Moreton Bay, as are juveniles of some mangrove-
influenced species (e.g. Tibbetts & Connolly 1998,
E. Stone unpubl. data). Juvenile purple tuskfish

Choero don cephalotes, grass and spangled emperor
Lethrinus laticaudis and L. nebulosus, fanbelly
leatherjacket Monacanthus chinensis and yellowtail
barracuda Sphyraena obtusata occur in seagrass and
migrate to reefs (and other structurally complex habi-
tat) at larger sizes but often forage over seagrass (e.g.
Blaber & Blaber 1980, Warburton & Blaber 1992, Wil-
son 1998, Fairclough et al. 2008). Similarly, painted
sweetlip Diagramma labiosum and bluebarred par-
rotfish Scarus ghobban recruit to shallow seagrass
and adjacent reefs, move to reefs as adults and feed
in adjacent seagrass and soft-bottom habitats (e.g.
Dorenbosch et al. 2005a,b, Mellin et al. 2007, Grand-
court et al. 2011). It is difficult to separate the poten-
tial drivers of these seascape linkages (e.g. ontoge-
netic or feeding migrations), but given the size
distribution of fish in each habitat (and the habitat
requirements of each species), we speculate that
mangroves in Moreton Bay are important foraging
locations for reef fish, while the value of seagrass pri-
marily reflects its use as a juvenile nursery (sensu
Beck et al. 2001). A potential differentiation of eco-
logical roles among these 2 nursery habitats, how-
ever, would have significant implications for the way
we conceptualise and manage nurseries for juvenile
reef fish.

Our results suggest a hierarchy in the correlation of
reef fish assemblages with seascape connectivity,
with composition being primarily driven by isolation
from mangroves, secondarily by proximity to sea-
grass and then by reef habitat variables within each
of these connectivity groups. We demonstrate that
mangrove and seagrass habitats can exert different
effects on reef fish assemblages and have more influ-
ence on reef fish abundance than the complexity of
the reef itself. These findings have important impli-
cations for the design of marine reserve networks,
the way we conceptualise nursery habitats for juve-
nile reef fish and the management of mobile ex -
ploited populations across reef seascapes. They show
that position in the seascape can be more significant
than reef area or complexity to the composition of
reef fish assemblages and highlight the value of
incorporating seascape connectivity into conserva-
tion planning.
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Appendix 1. Optimal settings and predictive performance of boosted regression tree (BRT) models. NT: number of trees; LR:
learning rate; TC: tree complexity; AUC: area under the receiver operating characteristic curve. Only species with fitted
 models with acceptable predictive performance (i.e. AUC ≥ 0.7) are reported. The bag fraction was set at the default 0.50 for
all models (bag fraction controls the level of stochasticity in BRT models and specifies the proportion of data to be selected 

at each step)

Species                                     NT          LR         TC      AUC

Abudefduf bengalensis         5700     0.0007      3       0.860
Acanthopagrus australis        5800     0.0006      3       0.860
Acanthurus dussumieri         1000     0.0009      3       0.707
Apogon limenus                     5200     0.0007      3       0.867
Atherinomorus vaigiensis     9250     0.0002      2       0.847
Chaetodon auriga                  3800     0.0006      3       0.826
Chaetodon flavirostris           8700     0.0003      3       0.886
Chaetodon melannotus         6150     0.0004      3       0.833
Chaetodon plebeius               3200     0.0008      3       0.824
Cheilodactylus vestitus         5950     0.0006      3       0.881
Chelmon rostratus                 3850     0.0009      3       0.891
Choerodon cephalotes           1500       0.001        2       0.728
Choerodon schoenleinii        8850     0.0001      4       0.704
Diagramma labiosum            6800     0.0003      3       0.820

Species                                     NT          LR         TC      AUC

Epinephelus coioides             2550     0.0009      2       0.827
Gerres subfasciatus               9400     0.0005      3       0.927
Lethrinus laticaudis               3800     0.0005      3       0.878
Lethrinus nebulosus              6350     0.0004      4       0.837
Lutjanus fulviflamma             6050     0.0005      3       0.895
Lutjanus russelli                     3950       0.001        3       0.892
Monacanthus chinensis         8000     0.0005      3       0.823
Parma oligolepis                    7950     0.0007      3       0.904
Pentapodus paradiseus         2050     0.0009      3       0.708
Prionurus microlepidotus      4000     0.0006      3       0.715
Scarus ghobban                     6500     0.0006      3       0.865
Siganus fuscescens                8350     0.0005      3       0.871
Sphyraena obtusata               9650     0.0004      3       0.862
Thalassoma lunare                 3850     0.0009      3       0.903
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