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Abstract
The surf zones of ocean beaches provide habitat for a diversity of fishes and are prime 
sites for recreational angling and commercial net fisheries. Here, we review the global 
literature (152 studies) on surf fish ecology to better inform fisheries management and 
coastal conservation planning. These studies suggest that surf zones support diverse 
fish assemblages, which are characterized by high numerical dominance (10 species 
typically comprise 95% of catches), but also show that few families are especially com-
mon. The composition of assemblages is highly variable, changing with fluctuations in 
water temperature, wave climate and the biomass of drifting algae or seagrass. Fish 
use surf zones as feeding habitats and transit routes, but these areas might not be 
widely used as spawning sites or juvenile nurseries. These systems are under escalat-
ing human pressures, most notably from coastal urbanization and recreational angling. 
Despite the recognized ecological and economic importance of surf-zone fishes, few 
studies have tested for impacts of urbanization or fishing. The benefits of marine re-
serves for fish in surf zones are also rarely measured. We suggest that progress will be 
made by moving from largely descriptive studies to hypothesis-driven research, which 
is guided by contemporary ecological theory and adapts modern techniques from re-
search in other ecosystems. A key challenge is to obtain empirical data that are needed 
to improve the effectiveness of fisheries management and underpin conservation 
planning for coastal waters.
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1  | INTRODUCTION

Ocean beaches and their surf zones dominate the world’s coast-
lines, comprising 70% of the global interface between land and sea 
(Bascom, 1980). These shore habitats are of immense economic and 
social value as prime sites for coastal development, tourism and 
recreation (Dugan et al., 2010; Huijbers et al., 2015a). Surf zones 
(i.e. the area of turbulent waves abutting ocean beaches) attract 
millions of recreational anglers each year and support significant 

fisheries (Defeo, 2003; Schlacher et al., 2015). Many fish species 
are prized by recreational anglers, such as tailor (Pomatomus salta-
trix, Pomatomidae) and mulloway (Argyrosomus japonicus, Sciaenidae) 
(Griffiths, 1997; Lenanton, Ayvazian, Pearce, Steckis, & Young, 
1996), or are harvested in commercial fisheries, for example anchovy 
(Thryssa vitrirostris, Engraulidae), mullet (Mugil cephalus, Mugilidae) 
and trevally (Trachurus trachurus, Carangidae) (Broadhurst, Millar, 
Brand, & Uhlmann, 2008; Cabral, Duque, & Costa, 2003; Mualeque 
& Santos, 2011). Surf zones are also frequented by numerous 
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threatened elasmobranchs that are promoted as flagships for con-
servation, including white sharks (Carcharodon carcharias, Lamnidae) 
and guitarfish (Rhynchobatus australiae, Rhinobatidae) (Kock et al., 
2013; Tobin, Mapleston, Harry, & Espinoza, 2014). Surf fish assem-
blages are increasingly modified by the effects of fishing, habitat 
alteration and eutrophication (see reviews by Defeo et al., 2009; 
Schlacher et al., 2014) (Figure 1).

Research on surf fish began in earnest in the 1960s with descrip-
tive accounts of fish abundance, size and diet (Jones, 1973; Okera, 
1978). Research is now geographically widespread and includes stud-
ies from the Atlantic, Indian and Pacific Oceans and the Mediterranean 
Sea (Figure 2). Surprisingly, there is no comprehensive review of the 
literature on fishes in surf zones, the globe’s single largest interface 
between the sea and the land. To address this shortcoming, we re-
viewed the published literature on fishes in surf zones by searching 
the Elsevier Scopus and ISI Web of Knowledge databases using all per-
mutations of the keywords: “surf zone,” “sandy,” “beach,” “nearshore,” 
“fish,” “shark,” “ray” and “elasmobranch.” Our primary goals were to de-
termine global patterns in (i) the distribution and thematic focus of surf 
fish research; (ii) diversity and abundance of fishes in surf zones; (iii) 
role of environmental conditions in structuring surf fish assemblages; 
(iv) ecological functions of surf zones as fish habitat; (v) importance 
of spatial linkages with other ecosystems; and (vi) human interactions 
with, and conservation of, fish in the surf zones of ocean beaches. We 
discuss opportunities to improve fisheries management and conser-
vation planning for coastal waters and identify important knowledge 
gaps to be targeted in future research.

2  | GLOBAL DISTRIBUTION AND 
THEMATIC FOCUS OF RESEARCH ON 
SURF FISHES

We identified 152 studies that reported on surf fishes, of which 
130 were in temperate and subtropical waters (Figure 2, Table 
S1 in Supporting Information). Research on surf fish comes from 
South Africa (42 studies), Brazil (25), the United States (24), 
Australia (18), Japan (16), Belgium (5), Portugal (4), Ecuador 
(2), Indonesia (2), Italy (2), Philippines (2), the United Kingdom 
(2), France (1), Ghana (1), Mozambique (1), the Netherlands 
(1), Sierra Leone (1), Sweden (1), Thailand (1) and Uruguay (1) 
(Figure 2).

Surf fish assemblages were mostly sampled with seine nets 
(n = 114), benthic species using beam trawls and sledges (n = 14), 
omnivores via angling (n = 13) and larval fish with specialized ich-
thyoplankton nets (n = 15) (Table S1). Seine netting is an effective 
means of capturing fish from beaches, but it is ineffective and dan-
gerous in heavy surf or in the deeper sections of many surf zones 
(i.e. where water depth exceeds 2 m) (McLachlan & Brown, 2006). 
These limitations restrict the conditions in which sampling can be 
conducted (e.g. to areas of small waves) and bias survey results by 
underestimating the abundance of benthic species, large predators 
and highly mobile taxa (Baker & Sheaves, 2006; Dorenbosch, Grol, 

de Groene, van Der Velde, & Nagelkerken, 2009). It is for this rea-
son that visual and remote techniques (e.g. drones, baited remote 
underwater video stations—BRUVS) are commonly used to survey 
fish in many marine habitats (e.g. estuaries, coral reefs, the open sea) 
(Gladstone, Lindfield, Coleman, & Kelaher, 2012; Murphy & Jenkins, 
2010). Visual methods are not, however, widely used to survey fish 
in surf zones; to date, they have only been used by two surf-zone 
studies in eastern Australia (Borland et al., 2017; Vargas-Fonseca 
et al., 2016).

A sizeable proportion of research on surf fishes is descriptive, 
dealing with either spatial variation in the composition of fish assem-
blages among beaches (n = 36 studies) or temporal variation in assem-
blage composition with changes in season, time of day or tide (n = 36) 
(Figure 2, Table S1). These descriptive studies account for almost 
half of the published literature on surf fishes (i.e. 72/151 studies). 
Thirty-three per cent (n = 50) of studies addressed questions about 
population ecology (n = 29) (e.g. larval recruitment, juvenile nursery 
habitats; Able, Wuenschel, Grothues, Vasslides, & Rowe, 2013) and 
trophic ecology (n = 21) (e.g. feeding habits, food webs; Bergamino, 
Lercari, & Defeo, 2011) (Figure 2). Seventeen per cent (n = 26) of all 
surf fish studies tested how variation in local environmental condi-
tions shaped the composition of fish assemblages (Pattrick & Strydom, 
2014) (Figure 2). Little research has been carried out on fish move-
ment in surf zones (n = 5; Parker, Booth, & Mann, 2013), or effects of 
habitat modification (n = 7; Vargas-Fonseca et al., 2016), fishing (n = 7; 
Clark, Bennett, & Lamberth, 1994) and marine reserves (n = 2; Venter 
& Mann, 2012).

3  | DIVERSITY AND COMPOSITION OF 
FISH ASSEMBLAGES IN GLOBAL SURF ZONES

Surf fish assemblages are characterized by high variability and numeri-
cal dominance of few taxa (Clark, 1997; Rishworth, Strydom, & Potts, 
2014). Across all studies for which we could extract data (n = 62), the 
10 most abundant species in each study made up 95% of the total 
catch, and the single most abundant species comprised, on average, 
44% of all individuals sampled (Figure 3, Table S1). Surf fish assem-
blages are diverse (mean of 33 species per study), but there is wide 
variation in the number of species reported from the surf zones of 
ocean beaches (Figure 3). Low species richness (i.e. <9 species) is 
reported by studies of short duration or limited spatial coverage or 
with low replication (Marin Jarrin & Shanks, 2011). By contrast, high 
species richness (i.e. up to 165 species) is a common finding of stud-
ies that sample the same location over multiple years (Suda, Inoue, & 
Uchida, 2002).

To date, 171 fish families have been reported from surf zones 
(Figure 4, Table S1). Most families (n = 118) are comprised of spe-
cies that are infrequent visitors to surf zones, such as stone fish 
(Synanceiidae) (Suda et al., 2002). Many other families (n = 43), in-
cluding turbot (Scopthalmidae), are scarce in most surf zones, but can 
be common in some locations (Vinagre, Silva, Lara, & Cabral, 2011) 
(Figure 4). By contrast, few families (n = 10), for example mullet and 
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herring (Clupeidae), are common and numerically dominate surf fish 
assemblages (Mikami, Nakane, & Sano, 2012) (Figure 4).

Fish families that are both common and abundant in surf zones 
include anchovy (Engraulidae), herring, mullet, mulloway, pipefish 
and seahorses (Syngnathidae), puffers (Tetraodontidae), silversides 

(Atherinidae), surf bream (Sparidae), tailor and trevally (Figure 4). Most 
of these fish families contain species that are well adapted to the high-
energy physical conditions of surf zones. Many are silver schooling 
species with bodies that are fusiform (e.g. mullet), laterally compressed 
(e.g. trevally) or dorsoventrally flattened (e.g. puffers) (Lauder, 2015; 

F IGURE  1 Surf zones support iconic 
fish species including large elasmobranchs 
that are of international conservation 
concern, such as white sharks (a), and 
heavily harvested bony fishes, such as 
tailor (b). Fish assemblages in surf zones are 
impacted by intense recreational fishing (c), 
commercial netting (d), coastal urbanization 
(e) and beach modification (f). Photographs 
by A. Olds, B. Markwell, D. Clark, J. Sears, 
M. Armistead and W. Gladstone. [Colour 
figure can be viewed at wileyonlinelibrary.
com]

F IGURE  2 Global distribution of fish ecology studies (n = 152) from the surf zones of ocean beaches. Pie charts illustrate the thematic focus 
and number of papers from each country (Table S1). [Colour figure can be viewed at wileyonlinelibrary.com]
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Webb & Weihs, 1983). Fusiform bodies are streamlined, and lateral 
compression increases manoeuvrability, whereas dorsoventrally flat-
tening allows fish to bury or remain on the sand surface while waves 
move over them (Lauder, 2015). These three body plans are likely ad-
vantageous for fish in turbulent surf zones (Tatematsu et al., 2014). 
Pipefish and seahorses are less well adapted to life in the surf; they 
have thin armoured bodies with small fins and are characterized by 
their limited mobility and narrow dietary niches; most species live in 
close association with benthic algae and seagrass (Connolly, Melville, 
& Keesing, 2002; Kendrick & Hyndes, 2005). Pipefish and seahorses 
are only likely to be abundant in surf zones when strong winds and 
waves wash them in from their preferred habitats, or when they ar-
rive with mats of drifting algae (Crawley, Hyndes, & Ayvazian, 2006; 
Nakane, Suda, & Sano, 2013).

4  | ENVIRONMENTAL DETERMINANTS OF 
SURF FISH ABUNDANCE AND DIVERSITY

Most studies describe spatio-temporal variation in species abundance 
or diversity without measuring how these changes relate to variation 
in environmental conditions (e.g. water quality, wave climate, beach 
morphology) (Figure 2). A few studies (n = 26) have tested for associa-
tions between environmental variables and the composition of fish as-
semblages in surf zones (Figure 2), mostly with the physical or chemical 
properties of surf zones, including water temperature (n = 20), wave 
climate (n = 13), biomass of drifting macrophytes (n = 12), salinity 
(n = 11), wind (n = 10) and turbidity (n = 8) (Figure 5, Table S1). There 
appears to be a positive effect of water temperature, wind speed and 
the biomass of drifting macrophytes on fish abundance and diversity 
(Figure 5). Surf fish abundance and diversity is also often negatively 
correlated with wave climate (i.e. wave height, period and speed), sa-
linity and turbidity (Figure 5).

Water temperature is positively correlated with fish abundance 
and diversity in many marine ecosystems (Harborne & Mumby, 2011), 
and so the widely reported effects of temperature on surf fish assem-
blages are not surprising (Rodrigues & Vieira, 2012). Positive effects 
on surf fish assemblages have been reported when water tempera-
tures change by as little as 2°C (e.g. 16–18°C) and as much as 23°C 
(e.g. 6–29°C), with most studies surmising that this relates to the sea-
sonal occurrence of transient species (Layman, 2000; Nanami & Endo, 
2007).

Biomass of drifting macrophytes (principally algae and seagrass) 
in surf zones is positively correlated with greater fish abundance 
and diversity (Crawley et al., 2006; Lenanton, Robertson, & Hansen, 
1982). Macrophytes are uprooted from abutting habitats (e.g. reefs, 
kelp beds, seagrass meadows) and drift into surf zones where they 
can provide shelter and feeding opportunities for fishes, partic-
ularly for species that are able to prey on the invertebrates that 
drift with macrophytes and use them as habitat (e.g. amphipods) 
(Hyndes et al., 2014).

Fish abundance and size are negatively correlated with wave 
height, period and speed, while diversity is usually greatest at inter-
mediate levels of exposure (Clark, 1997; Pattrick & Strydom, 2014). 
Many fish species are most abundant in the surf zones of low-energy 
beaches with small waves, but some species can be common in the 
large surf of ocean beaches (Hyndes, Potter, & Lenanton, 1996; Inui 

F IGURE  3 Species dominance (k-dominance curves) and species 
richness (insert bar graph) of fish assemblages from studies in surf 
zones of ocean beaches (n = 62; thin lines are individual studies and 
thick lines the mean ± 95% confidence limit) (Table S1). [Colour figure 
can be viewed at wileyonlinelibrary.com]

F IGURE  4 Relative abundance and frequency of occurrence 
of fish families from surf zones globally. Families were ranked by 
(i) summing all individuals per family in individual studies and (ii) 
ranking families across all studies (n = 58) in terms of the mean 
abundance (x-axis). Frequency of occurrence is the proportion of 
studies that reported species from each family (y-axis) (Table S1). 
We illustrate “common families” as those that occurred in more than 
half of all studies and “abundant families” as those that ranked within 
the top 10 in the global data set. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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et al., 2010; Valesini, Potter, & Clarke, 2004). Surf zones comprise 
several microhabitats (e.g. gutters, runnels, sandbars), which experi-
ence different wave energy conditions and consequently may support 
distinct fish assemblages (Layman, 2000; McLachlan & Brown, 2006). 
Fish diversity and abundance can be greatest in gutters or runnels (but 
see Borland et al., 2017), which are areas of deeper and less turbulent 
water that occur away from breaking waves (Janssen, Kleef, Mulder, 
& Tydeman, 2008; Watt-Pringle & Strydom, 2003). Shallow turbulent 
waters over sandbars also provide foraging areas for juvenile fishes 
(Able et al., 2013), support large elasmobranchs that are of conserva-
tion concern (Vargas-Fonseca et al., 2016) and sustain high functional 
diversity (Borland et al., 2017).

Differences in water chemistry (e.g. salinity, turbidity) and weather 
conditions (e.g. wind speed) affect the composition of fish assem-
blages in most coastal ecosystems (Blaber, 2013; Olds et al., 2014; 
Sheaves, Johnston, & Connolly, 2012), but there is no consensus on 
how these variables influence fish in the surf zones of beaches. Several 
studies have described that salinity, turbidity and wind speed can 
modify the composition of fish assemblages (Lasiak, 1984a; Rodrigues 

& Vieira, 2012), while numerous others report no effects (Inui et al., 
2010; Wilber, Clarke, Burlas, Ruben, & Will, 2003a). Most research 
was, however, not designed to test for effects on the composition of 
fish assemblages over broad ranges of either salinity, turbidity or wind 
speed. Gradients in salinity and turbidity shape the composition of fish 
assemblages in estuaries (Blaber, 2013) and we predict that future 
research will show that they are of similar importance to fish in surf 
zones.

5  | SURF ZONES AS FISH HABITAT

Fish use surf zones as feeding areas, refuges from predators, spawning 
sites and nursery habitats (Ayvazian & Hyndes, 1995; Layman, 2000; 
Lenanton et al., 1982; Strydom & D’Hotman, 2005). Well-known ex-
amples that illustrate these habitat functions of surf zones include 
their use as nocturnal feeding areas by mulloway (Griffiths, 1997); ref-
uges from predation and foraging habitats by whiting (Sillago japonica, 
Sillaginidae) (Nakane, Suda, & Hayakawa, 2009); spawning grounds by 

F IGURE  5 Environmental factors identified in the global literature to be associated with changes in surf fish assemblages. Circles provide 
synopses of research on six environmental factors (i.e. water temperature, macrophytes, wind speed, wave climate, salinity and turbidity). The 
total number of studies examining each environmental factor is shown in the centre of each circle. Circle quarters represent summaries of 
correlations with surf fish assemblages (i.e. species richness, abundance, biomass, composition). The proportion of studies reporting significant 
effects is illustrated by a quadrant’s size and is provided as a percentage (e.g. 33% of macrophyte studies report positive effects on fish species 
richness). [Colour figure can be viewed at wileyonlinelibrary.com]
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grunion (Leuresthes tenuis, Atherinopsidae) (Griem & Martin, 2000); 
and juvenile nurseries and feeding areas by tailor (Lenanton et al., 
1996) (Figure 6).

5.1 | Foraging habitats

The trophic ecology of surf fishes has been reasonably well studied 
(n = 21), at least by comparison with other the potential roles of surf 
zones as fish habitat (Bergamino et al., 2011; McLachlan & Brown, 
2006). Most species are either planktivores (e.g. silversides), detriti-
vores (e.g. mullet), benthic predators (e.g. trevally) or piscivores (e.g. 
tailor) (Elliott et al., 2007; Lercari, Bergamino, & Defeo, 2010). By con-
trast, there are few species of herbivores in the surf zones of ocean 
beaches.

A rising tide provides access to new food resources for fish that 
forage in the intertidal zones of beaches, and many species move 
up the beach at this time to capitalize on the rich diversity of feed-
ing opportunities (sensu Sheaves, 2005; Hyndes et al., 2014). Thus, 
foraging activity varies with tidal, diel and seasonal changes in food 
abundance. Small benthic predators (e.g. whiting) feed on inter-
tidal invertebrates when the tide provides access to the beach face 
(Hyndes et al., 1996; Nakane, Suda, & Sano, 2011). Larger benthic 
predators (e.g. mulloway) move into surf zones at night to forage 
on fish and crustaceans (Griffiths, 1996). Piscivores (e.g. tailor) and 
detritivores (e.g. mullet) feed in surf zones during seasonal migra-
tions to other habitats (Lenanton et al., 1996; Romer & McLachlan, 
1986).

5.2 | Refuges from predators

Juvenile fish can be particularly abundant in the gutter habitats of 
surf zones (e.g. runnels and troughs, which run parallel to beaches 
and provide areas of deeper, and less turbulent, water between 

bars), which has led to the hypothesis that these areas might restrict 
the access, manoeuvrability and foraging efficiency of large preda-
tory fishes (Inoue, Suda, & Sano, 2008). The refuge-from-predation 
hypothesis is a common contention in the surf fish literature, but 
it has rarely been tested with empirical data (Nakane et al., 2009; 
Tobin et al., 2014). Predatory fishes can be both diverse and abun-
dant in surf zones (Tobin et al., 2014; Vargas-Fonseca et al., 2016), 
and predation experiments (n = 2), which measure the consumption 
of tethered prey fish, show that predators can exert heavy mortal-
ity on juvenile fish across surf-zone habitats (Gibson & Robb, 1996; 
Nakane et al., 2009). The results of these studies challenge the no-
tion that surf zones provide juvenile fish with an effective refuge 
from predators.

The refuge-from-predation hypothesis was first conceived as 
a possible explanation for the high abundance of juvenile fishes 
in shallow estuarine habitats. It has since been critically exam-
ined for seagrass meadows, mangrove forests and intertidal flats 
(Dorenbosch et al., 2009; Hindell, 2006; Sheaves, 2001) and is often 
not supported by empirical data (but see Paterson & Whitfield, 
2000). Consequently, research in other coastal systems is now con-
cerned with testing how predation shapes the timing and extent of 
ontogenetic migrations across seascapes (Nagelkerken, Sheaves, 
Baker, & Connolly, 2015).

5.3 | Spawning sites

Many fish species move through the surf zones of ocean beaches on 
their spawning migrations from estuaries to marine waters (Gillanders, 
Able, Brown, Eggleston, & Sheridan, 2003; Ray, 2005). Reproductively 
ripe and spent individuals of many fish species have been recorded 
in surf zones, but there is no evidence of actual spawning by these 
taxa (Lasiak, 1983b, 1984b). In addition, the low numbers of fish eggs 
and preflexion larvae in surf-zone ichthyoplankton (Strydom, 2003; 

F IGURE  6 Conceptual diagram 
illustrating the diverse functions of 
surf zones as habitat for fishes and the 
importance of spatial connections to other 
coastal ecosystems. Mulloway move into 
surf zones at night from nearby rocky 
reefs and estuaries to feed on benthic 
invertebrates (a). Whiting migrate to surf 
zones from estuaries and use these areas 
as refuges from predators and feeding 
grounds (b). Grunion migrate to surf 
zones from coastal waters to spawn on 
exposed beaches (c). Tailor use surf zones 
as juvenile nurseries and feeding areas and 
as dispersal routes on spawning migrations 
from estuaries to rocky headlands (d) 
(symbols courtesy of the IAN, ian.umces.
edu/symbols/). [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)
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Whitfield, 1989) suggest that most coastal fish species spawn further 
offshore (Pattrick & Strydom, 2008).

Empirical evidence of spawning in surf zones of beaches is limited 
to two genera: grunion (Leuresthes spp., Atherinopsidae) and surf smelt 
(Hypomesus spp., Osmeridae). Grunion undertake mass spawning mi-
grations to deposit their eggs into the exposed face of surf beaches in 
California and Mexico (Griem & Martin, 2000). Surf smelt migrate en 
masse to spawn in the shallow swash areas of surf beaches in the United 
States and Japan (Quinn et al., 2012). Spawning in shallow water, or 
on the beach face, can be a risky strategy for fish (i.e. greater risk of 
stranding, egg desiccation and predation from beach invertebrates), but 
it also affords eggs with advantages (i.e. warmer temperatures and high 
oxygenation) that aid their development (Martin & Swiderski, 2001). 
The high turbulence of exposed surf zones also makes these areas haz-
ardous for spawning fishes and possibly limits the extent to which they 
are used for this purpose (Hyndes & Potter, 1997).

5.4 | Juvenile nursery habitats

Many studies have postulated that surf zones function as nursery 
habitats for fish because assemblages are frequently dominated by 
larvae and juveniles of species that differ to those in nearby coastal 
habitats (Able et al., 2013; Lasiak, 1981; Whitfield & Pattrick, 2015). 
Surf zones also support an abundance of post-larvae and early juve-
niles of estuary-associated fish species, which suggests that these 
habitats may function as settlement sites or interim nurseries for 
some fish species (Whitfield, 1989). To function as a nursery for ju-
venile fish, it is, however, not sufficient to simply support an abun-
dance of juveniles: effective nursery habitats must also promote fish 
growth and survival and allow individuals to migrate to adult habi-
tats and reproduce (Beck et al., 2001). These criteria can be difficult 
to test even in sheltered estuaries (Nagelkerken et al., 2015) and 
are particularly challenging to address in the dynamic conditions of 
exposed surf zones. Data on juvenile abundance and growth (n = 6) 
suggest that surf zones might be alternative nurseries to estuaries 
for certain mullet (Liza richardsonii and Mugil curema, Mugilidae), 
trevally (Trachinotus carolinus, Carangidae), surf bream (Diplodus cap-
ensis, Lithognathus mormyrus and Rhabdosargus globiceps, Sparidae), 
grunts (Pomadasys olivaceus, Haemulidae) and salmon (Oncorhynchus 
tshawytscha, Salmonidae) (Able et al., 2013; Lasiak, 1981, 1983a; 
Marin Jarrin & Miller, 2013; Rishworth, Strydom, & Potts, 2015; 
Whitfield & Pattrick, 2015). The strongest evidence that surf zones 
provide a nursery function is available for tailor, which can be abun-
dant and grow rapidly in surf zones before migrating to other loca-
tions as adults (Able et al., 2013; Whitfield & Pattrick, 2015).

Given that the nursery functions of surf zones have rarely been 
measured by testing for effects on juvenile growth, survival and on-
togenetic migration, there is much work to be done before we can 
confirm whether surf zones represent effective nurseries for juve-
nile fish. Surf zones are, however, just one of the many habitats that 
are used by fish species that migrate among different ecosystems in 
coastal seascapes (Gillanders et al., 2003; Ray, 2005). Their value as a 
nursery for fish should therefore not be viewed in isolation from the 

other ecosystems to which they are functionally linked by fish migra-
tion (sensu Whitfield, 1989; Nagelkerken et al., 2015).

6  | SURF ZONES ARE LINKED TO OTHER 
COASTAL ECOSYSTEMS

Fish assemblages in the surf zones of ocean beaches are influenced 
by the effects of spatial linkages with other ecosystems (Ayvazian & 
Hyndes, 1995; Schlacher et al., 2015). Fish move from surf zones to 
other habitats (e.g. estuaries, coral and rocky reefs) to feed, spawn 
and disperse (Vargas-Fonseca et al., 2016). The post-larvae of some 
estuary-associated marine fishes also recruit to surf zones before mov-
ing into estuaries (Whitfield, 1989). These movements modify spatial 
patterns in fish abundance and diversity across coastal seascapes 
(Gillanders et al., 2003) (Figure 6). Surf zones are also functionally 
linked to estuaries, seagrass meadows and reefs through the trans-
location of organic material (seagrass, algae, carrion), which provides 
food for invertebrates and fish (Crawley, Hyndes, Vanderklift, Revill, 
& Nichols, 2009; Hyndes et al., 2014; Schlacher & Connolly, 2009).

The effects of this seascape connectivity are particularly 
well documented for fish assemblages in estuarine and coral reef  
seascapes (Nagelkerken et al., 2015; Olds et al., 2016), but their  
potential consequences for surf fishes are rarely tested with empiri-
cal data (Schlacher et al., 2015). Research into the ecological effects 
of seascape connectivity on surf fish assemblages (n = 5) has demon-
strated that spatial linkages with estuaries and reefs can affect fish 
abundance and species richness in surf zones (Ayvazian & Hyndes, 
1995; Valesini et al., 2004; Vargas-Fonseca et al., 2016). The trans-
location of uprooted kelp fronds to ocean beaches provides food for 
fish (principally from amphipods that travel with kelp) and modifies 
fish diet and abundance in the surf zones of ocean beaches (Crawley 
et al., 2006, 2009). All of these studies are geographically limited to 
Australian surf zones. Thus, research needs to be expanded to other 
biogeographic regions to test the broader relevance of seascape 
connectivity for fish in surf zones.

7  | HUMANS AND SURF FISHES: 
HABITAT MODIFICATION, FISHING 
AND CONSERVATION

Beaches are focal points for coastal development, recreation and 
fishing (Schlacher et al., 2014) (Figure 1). The cumulative impacts of 
human use (e.g. walking on dunes, 4WDs on the beach), shoreline 
modification (e.g. grooming, nourishment, armouring) and contami-
nation (e.g. nutrients, sediments, toxicants) modify the abundance 
of fauna on beaches that border coastal cities (Defeo et al., 2009; 
Huijbers et al., 2015a; Schlacher et al., 2016). Data on anthropogenic 
effects on surf fishes are limited to impacts from urbanization (n = 1), 
beach nourishment (n = 3) and artificial shoreline structures (n = 3). 
The single study to examine the effects of coastal urbanization on 
surf fish assemblages (Vargas-Fonseca et al., 2016) reported that 
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fish diversity and abundance of piscivorous fishes were lowest in the 
surf zones of highly urban beaches in Australia. Beach nourishment 
studies either report no significant effects on fish assemblages (Ross 
& Lancaster, 2002) or describe impacts to fish abundance, diversity 
and diet (Manning, Peterson, & Fegley, 2013; Wilber, Clarke, Ray, & 
Burlas, 2003b). Studies on the effects of artificial structures either re-
port no impact of jetties or breakwaters on fish assemblages (Mikami 
et al., 2012; Rodrigues & Vieira, 2012) or outline changes to fish abun-
dance and diversity that are attributed to the construction of groins 
(Tatematsu et al., 2014).

Ocean beaches attract millions of recreational anglers each year 
and are focal points for commercial netting (Cabral et al., 2003; 
Clark et al., 1994; McLachlan & Brown, 2006). Large predators are 
also routinely removed from surf zones in shark control programmes 
aimed at improving swimmer safety (Gibbs & Warren, 2015). Angling, 
netting and shark control programmes harvest fish from different 
guilds and might have altered the diversity and trophic composition 
of surf fish assemblages, but surprisingly little research has been 
carried out to investigate their impact in surf zones globally (n = 7).

Fishing has changed the abundance, diversity and composition of 
surf fish assemblages in Australia, Brazil, Portugal and South Africa 
(Cabral et al., 2003; Clark et al., 1994; Franco, Ramos Chaves, Castel-
Branco, & Neves Dos Santos, 2016; Mualeque & Santos, 2011; Parker 
et al., 2013). Two studies correlate changes in fishing practices with 
variation in fish abundance over multiple years (7 years, Bennett, 
1991, 20 years, Rishworth et al., 2014). Both report evidence of over-
fishing in South African surf zones, including a reduction in fish abun-
dance and a shift in dominance to smaller fishes at lower trophic levels 
(Rishworth et al., 2014). It appears that fishing can modify fish assem-
blages in the surf; however, we do not know whether different forms 
of fishing (e.g. recreational angling, commercial netting, shark control 
programmes) exert distinct impacts.

There are also limited data to show how surf fish assemblages re-
spond to fisheries management actions (e.g. size limits, catch quotes, 
closed seasons) that are enacted to minimize impacts of fishing on surf 
fishes. South African fisheries for tailor provide a prominent example of 
management success. Tailor fishing was banned after catches declined 
from 12.5 to 5 fish per 100 hr of fishing between 1956 and 1973 (van 
der Elst, 1976). Tailor populations recovered by 1988 and recreational 
angling and commercial fisheries recommenced (Mann, 2000).

Marine reserves are a common, and effective, tool for conserv-
ing biodiversity and ecosystem functioning (Lester et al., 2009; Olds 
et al., 2016). Reserves that prohibit fishing can promote the density, 
body size and biomass of harvested fishes (Huijbers et al., 2015b). 
Despite their widespread success in other ecosystems, only two 
studies have examined the effects of marine reserves on fish in surf 
zones (Bennett & Attwood, 1991; Venter & Mann, 2012). These stud-
ies assessed the effectiveness of the De Hoop and Dwesa-Cwebe 
reserves in South Africa, and both report higher fish abundance and 
diversity inside marine reserves than in nearby fished areas. These 
results require broader testing to confirm whether marine reserves 
provide effective conservation for fish in other surf zones, and to 
improve planning decisions about coastal conservation.

8  | FUTURE DIRECTIONS

The inventory of fish species from global surf zones is incomplete 
(Figure 2). As fish are surveyed from other ocean beaches and new 
sampling techniques become more widely adopted (e.g. BRUVS, 
drones) (Vargas-Fonseca et al., 2016), we predict that many more fish 
species and families will be reported from the surf zones of ocean 
beaches (Research Priority 1; Table 1). Surprisingly, few studies have 
examined how surf fish assemblages are modified by environmen-
tal conditions (e.g. wave climate, water quality and drifting macro-
phytes) (Research Priority 2; Table 1). Beach morphology, exposure 
and coastal hydrodynamics can also affect fish assemblages in the 
surf (Borland et al., 2017; Pattrick & Strydom, 2014). The abundance, 
diversity and size of macrofauna on beaches are shaped, globally, 
by tidal range, sediment grain size and both the width and slope of 
beaches (Defeo & McLachlan, 2013; Schlacher & Thompson, 2013). 
These morphological features of beaches are modified by sediment 
supply, tides and wave exposure and alter the availability of both food 
(e.g. invertebrate prey) and habitat (e.g. gutters, runnels, bars) for surf 
fishes, but it is not clear to what extent they influence the composition 
of surf fish assemblages (Research Priority 3; Table 1).

It is widely believed that fish use surf zones as habitat for feed-
ing, seeking refuge from predators and spawning and as juvenile 
nurseries, but these hypothesized habitat functions of surf zones are 
rarely tested with empirical data (Able et al., 2013; Tobin et al., 2014; 
Vargas-Fonseca et al., 2016). Translocated organic material (seagrass, 
algae, carrion) provides food for invertebrates and fish in surf zones 
(Crawley et al., 2009); these trophic subsidies are widespread on 
ocean beaches, but their role in coastal food webs is not well docu-
mented. Stable isotope analysis (see reviews by Hyndes et al., 2014; 
Layman et al., 2015) will be useful for tracing sources of fish nutri-
tion and understanding food webs in surf zones (Research Priority 4; 
Table 1). The abundance of predators and heavy predation on small 
fishes in surf zones indicate that these habitats may not provide ju-
venile fish with a particularly effective refuge from predators (Nakane 
et al., 2009; Tobin et al., 2014). Predation might therefore modify fish 
abundance and movement, but it is not clear where predators occur in 
surf zones or whether particular microhabitats (e.g. wrack, sand bars) 
provide any form of reprieve from predation (Research Priority 5; 
Table 1). Empirical evidence of spawning is rare and limited to grunion 
and surf smelt, which spawn largely on beaches (Martin & Swiderski, 
2001). Consequently, it has been suggested that surf zones might 
not make suitable spawning sites for many fishes (Hyndes & Potter, 
1997); this hypothesis requires further testing (Research Priority 6; 
Table 1). Similarly, few studies have attempted to assess whether surf 
zones function as nurseries for juvenile fish (sensu Beck et al., 2001; 
Nagelkerken et al., 2015). Juvenile fish can be abundant and grow 
in surf zones (Able et al., 2013), but we do not know the proportion 
of juveniles of any species that survive and migrate to adult habitats 
to reproduce (Research Priority 6; Table 1). Nevertheless, fish move 
into surf zones from other habitats and this connectivity structures 
fish populations, food webs and ecosystem functions across coastal 
seascapes (Olds et al., 2016). It is not clear, however, whether these 
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functional effects of connectivity are prominent features of global 
surf zones (Research Priority 7; Table 1).

Most ocean beaches have been modified by human actions (e.g. 
urbanization, shoreline modification, pollution, fishing) (Defeo et al., 
2009; Schlacher et al., 2014). The potential ecological consequences 
of these activities for surf fish are rarely considered in ecological im-
pact assessments or fisheries management. Consequently, it is not 
clear whether the ecological effects of coastal development are severe 
in surf zones (Research Priority 8; Table 1). Furthermore, intense fish-
ing pressure leads to significant reductions in fish abundance, biomass 
and diversity, but there are no published data that can be used to de-
termine what level of fishing effort is sustainable or which species are 
particularly at risk from harvesting in surf zones (Research Priority 9; 
Table 1). Marine reserves have been implemented globally to conserve 
biodiversity and protect threatened species (Huijbers et al., 2015b), 
but modern principles of conservation planning are rarely applied to 
ocean beaches (Harris, Nel, Holness, & Schoeman, 2015) and empiri-
cal data on reserve effectiveness are needed to improve conservation 
decisions for ocean beaches (Research Priority 10; Table 1).

9  | CONCLUSIONS

Despite the prominent ecological, economic and social roles of ocean 
beaches, we lack basic information on the biology of many surf-zone 
fishes. Most research is purely descriptive, and surprisingly little 
is known about why fish use surf zones as habitat. Moreover, it is 
not clear how the habitat values of surf zones for fishes change with 
variation in the physical properties of surf zones (e.g. water chem-
istry, wave height, beach morphology, bathymetry), or in response 
to impacts from heavy fishing pressure and coastal urbanization. 

Consequently, there are many opportunities for research on the ecol-
ogy of fish from ocean beaches. Working in tumultuous surf zones 
presents unique challenges for researchers and their equipment, and 
more efficient technologies are thus required to improve the accu-
racy and safety of studies of surf biota. To advance our understand-
ing of surf fish assemblages, we must draw on ecological theory and 
experimental techniques that are applied to study fish in other coastal 
ecosystems. The chief priorities for research are to obtain data on the 
ecological effects of fishing and coastal urbanization, and to identify 
features that promote marine reserve performance; this is critical for 
optimizing marine spatial planning on exposed coastlines.
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