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Abstract

Predicting the impacts of multiple stressors is important for informing ecosystem 

management but is impeded by a lack of a general framework for predicting 

whether stressors interact synergistically, additively or antagonistically. Here, we 

use process- based models to study how interactions generalise across three levels 

of biological organisation (physiological, population and consumer- resource) 

for a two- stressor experiment on a seagrass model system. We found that the 

same underlying processes could result in synergistic, additive or antagonistic 

interactions, with interaction type depending on initial conditions, experiment 

duration, stressor dynamics and consumer presence. Our results help explain why 

meta- analyses of multiple stressor experimental results have struggled to identify 

predictors of consistently non- additive interactions in the natural environment. 

Experiments run over extended temporal scales, with treatments across gradients 

of stressor magnitude, are needed to identify the processes that underpin how 

stressors interact and provide useful predictions to management.
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INTRODUCTION

The global environment is under pressure from multiple 
stressors (Halpern et al., 2008; Jones et al., 2018). Many 
anthropogenic stressors are increasing, often at acceler-
ating rates, so ecosystems will encounter novel conditions 
with increasing frequency (Halpern et al., 2019; Muhling 
et al., 2020). Traditional management generally focusses 
on reducing the impacts of single stressors. However, in 
the presence of multiple stressors, actions that mitigate 
single stressors can have drastically varying –  and even 
detrimental –  effects on ecological systems if potential 
interactions with other stressors are ignored (Brown 
et al., 2013). Therefore, accurate predictions of multiple 
stressor interactions are necessary for ecosystem man-
agement (Côté et al., 2016; Orr et al., 2020).

One way to predict stressor interactions is to identify 
generalities in types of interactions across ecosystems, 
stressors, levels of biological organisation, and times-
cales (Crain et al., 2008; Jackson et al., 2016; Tekin et al., 
2020). A common approach is to classify stressor inter-
actions as additive, antagonistic, or synergistic (Folt 
et al., 1999). Additive interactions occur when combined 
stressor effects equal the sum of each stressor considered 
in isolation; antagonistic interactions occur when the 
combined effects are less than the additive expectation; 
and synergies occur when interactions exceed the sum of 
the additive expectation (Folt et al., 1999; Piggott et al., 
2015). Detecting synergistic interactions remains a focus 
in the literature, as anthropogenic stressors that interact 
synergistically will not only have negative effects on their 
own: they will also amplify negative impacts of other, 
co- occurring environmental stressors (Côté et al., 2016; 
Darling & Côté, 2008).

Few consistent generalities have been found across 
different meta- analyses (Côté et al., 2016; Crain et al., 
2008; Jackson et al., 2016), as the identification of syner-
gies and antagonisms is fraught with difficulties. First, 
interaction type is defined relative to a ‘null’ model (i.e. 
a model representing the expectation in the absence of 
stressor interactions), so the choice of null model (usu-
ally taken to be an expectation of additive effects) affects 
whether interactions are classified as synergies or an-
tagonisms (Piggott et al., 2015; Schäfer & Piggott, 2018). 
Second, interaction classifications can differ depend-
ing on how the response variable is transformed prior 
to analysis. For example, an additive relationship on a 
log- transformed scale is not additive, but multiplicative, 
on an arithmetic scale (Duncan & Kefford, 2021). Null 
hypotheses of interactions in linear model frameworks 
can thus be incorrect and misleading if the analytical 
decisions that can change the classification of stressor 
interactions are ignored (Griffen et al., 2016).

Interaction types can also change under different con-
texts. For example, interaction type can depend on pop-
ulation density, where higher population densities can 
mitigate the effects of multiple stressors on individual 

survival (Lange & Marshall, 2017). Changes in per cap-
ita interactions (both intra-  and interspecific) or growth 
rates can counteract negative effects of environmental 
stressors when they reduce competition (Baert et al., 
2018). Additionally, interactions can change with the 
presence of additional interacting stressors (Crain et al., 
2008), stressor magnitude (Galic et al., 2018; Lange et al., 
2018) or order of stressor exposure (Ashauer et al., 2017). 
The temporal dynamics of both responses and stressors 
create further challenges for quantifying stressor interac-
tions (Jackson et al., 2021). The temporal scale at which 
the response is measured can affect the classification of 
stressor interactions (Garnier et al., 2017), while stressors 
themselves are not static in time and multiple stressors 
can impact systems through various discrete and/or con-
tinuous stressor events (Gunderson et al., 2016; Jackson 
et al., 2021). Progressing multiple stressor research re-
quires moving beyond defining synergy or antagonism, 
and towards capturing the processes that mediate how 
stressors interact to influence different observed biolog-
ical responses over multiple spatial and temporal scales 
(Simmons et al., 2021).

Most studies examining multiple stressors in recent 
decades have used linear models to evaluate interac-
tions (e.g., ANOVA, linear mixed models). Non- linear 
relationships between response and explanatory vari-
ables have been approximated using phenomenological 
approaches such as GAMs and polynomials. However 
a lack of mechanistic interpretability of model param-
eters when fitting such models means that generalities 
derived from such studies may yield misleading pre-
dictions of interactions (Duncan & Kefford, 2021; Orr 
et al., 2020). Models that capture the mechanisms that 
drive biological changes are required to predict ecosys-
tem responses to multiple stressors (Schuwirth et al., 
2019), particularly under novel conditions beyond the 
ranges of stressor values for which response data are 
available (Goussen et al., 2020). Without analysing 
stressor effects in a mechanistic or process- oriented 
framework, the extent to which testing for synergy and 
antagonism can advance our understanding of multiple 
stressor interactions is likely to be limited (De Laender, 
2018).

Process- based models (PBMs) offer one way to pre-
dict ecological responses to multiple stressors (Haller- 
Bull & Bode, 2019; Simmons et al., 2021; Tonkin et al., 
2019). PBMs can be defined as ‘models that characterize 
the changes in a system’s state as explicit functions of the 
events that drive those state changes’ (Connolly et al., 
2017). Stressor– response relationships are fundamental 
to PBMs, as they quantify the often non- linear processes 
that drive change in biological responses and allow more 
informative predictions than methods such as linear 
statistical extrapolation because they explicitly model 
the mechanisms rather than fitting a phenomenologi-
cal relationship between stressor and response (Griffen 
et al., 2016; Pirotta et al., 2022). Here, we integrate PBMs 
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within a framework to classify interaction types and ex-
plore how two stressors interact to impact responses at 
physiological, population and consumer- resource lev-
els. Thus, we address a key research priority to exam-
ine patterns of stressor interactions at multiple levels of 
biological organisation (Orr et al., 2020) and ecological 
scales (Simmons et al., 2021). We demonstrate our ap-
proach using seagrass meadows challenged by increased 
temperature and light limitation –  caused by climate 
warming and poor water quality associated with land- 
use change, respectively.

M ATERI A LS A N D M ETHODS

Model study system

Seagrass meadows are one of the world’s most impor-
tant coastal habitats and a model system for multiple 
stressor experimental studies (Stockbridge et al., 2020). 
They provide ecosystem services including contributions 
to fisheries (Unsworth et al., 2019), carbon sequestration 
(Macreadie et al., 2014) and coastal protection (Koch 
et al., 2009). Seagrass meadows are threatened by multi-
ple stressors such as ocean warming and poor water qual-
ity (Dunic et al., 2021; Thomson et al., 2015; Turschwell 
et al., 2021). The cumulative effects of such stressors will 
continue affecting seagrass habitats, as oceans continue 
to warm (Chefaoui et al., 2018) and land- based activities 
degrade coastal ecosystems (Saunders et al., 2017). We 
calibrated a PBM using parameter estimates from pub-
lished empirical studies and single- stressor models cali-
brated to empirical data for the tropical seagrass genus 
Halodule, which is generally classified as having colonis-
ing or opportunistic life- history traits (Kilminster et al., 
2015). Our models characterize the expected outcomes of 
experiments where treatments are being compared under 
different stressors levels (hence we refer to modelled 
stressor responses as ‘model runs’). Structurally similar 
models could easily be used to explore multiple- stressor 
effects on other marine, freshwater or terrestrial primary 
producers.

Models

Physiological sub- model

At a physiological level, temperature and light affect 
gross photosynthesis, whereas only temperature affects 
respiration (Adams, Koh, et al., 2020). Photosynthesis 
rate, P(I ,T ), was modelled as a non- linear function of 
irradiance, I, and temperature, T:

where B is the above ground biomass in a monotypic stand, 
proportional to Bmax, which is the biomass at which gross 
production is zero. Pmax is the maximum specific produc-
tion, at temperature T (°C) and irradiance I based on the 
Jassby– Platt parameterisation (Jassby & Platt, 1976):

where Ik is the saturation irradiance, PTmax is the maxi-
mum gross production at temperature T derived from the 
Yan and Hunt model (Adams et al., 2017; Yan & Hunt, 
1999), Tmax is the maximum temperature at which photo-
synthesis can occur and Topt is the optimal temperature for 
photosynthesis.

The photosynthesis model assumed no photo- inhibition 
at high irradiance (Fourqurean & Zieman, 1991) and in-
cluded a logistic function to capture self- shading of the 
plant canopy, which limits production at high shoot den-
sities (Burd & Dunton, 2001). Oxygen (O2) consumption 
rates were converted to carbon (C) fixation rates by as-
suming that the amount of carbon fixed/released during 
photosynthesis and respiration was equal to the amount of 
O2 evolved/fixed, respectively (Adams et al., 2017; Roberts 
& Moriarty, 1987). Leaf respiration, R(T ), was modelled as 
a non- linear function of temperature T:

where Rmax is the maximum respiration at temperature 
T, also derived from the Yan and Hunt model, RT_max 
is the maximum temperature at which respiration 
can occur, and RT_opt is the optimal temperature for 
respiration. Finally, we defined net production per B 
per day (response variable for the physiological sub- 
model), NP, as:

Population sub- model

For the population sub- model, we converted grams of car-
bon to grams of seagrass tissue, assuming that carbon ac-
counts for approximately 33% of plant biomass (Hansen 
et al., 2000). We modelled change in biomass (g dry weight 
m– 2) as a dynamic state variable, B(t), following:

where m is mortality, defined by the rate of seagrass leaf 
loss. The analytical solution to this differential equation 
gives biomass as an explicit function of time:(1)P(I ,T ) = Pmax(I ,T )

(

1 −
B

Bmax

)

(2)

Pmax(I, T) = PT_max

(

Tmax − T

Tmax − Topt

)(

T

Topt

)Topt∕(Tmax−Topt)
tanh

(

I

Ik

)

,

(3)

R(T ) = Rmax

(

RT_max − T

RT_max −RT_opt

)(

T

RT_opt

)RT_opt∕(RT_max−RT_opt)
,

(4)NP = P(I ,T ) −R(T ).

(5)
dB(t)

dt
= P(I ,T )B(t) −R(T )B(t) −mB(t),
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where tis the time in days, the initial biomass (B0) is 
used to compute F =

B0

�B0 +�
, and � =

−Pmax(I ,T )

Bmax

 and 
� = Pmax(I ,T ) −R(T ) −m.

Consumer- resource model

To model dynamic interactions between the primary 
producer and a consumer we added a term representing 
biomass consumption by the consumer (X(t)):

Here, a is the consumer attack rate, S(T ) is the 
temperature- dependent scaling equation for the con-
sumer attack rate and mortality (discussed in López- 
Urrutia, 2008), based on the metabolic theory of ecology 
(Brown et al., 2004):

where s0 is the body size dependent normalization factor 
of the metabolic rate, E is the activation energy of hetero-
trophs and k is Boltzmann’s constant (Table 1). This equa-
tion is assumed to be the same for temperature scaling of 
the attack rate and mortality based on previous studies 
(O’Connor et al., 2011).

We modelled the change in consumer density over 
time, X(t), as:

where X is the consumer density (m−2), c is the consumer 
assimilation efficiency, and v is the consumer’s mortality 
rate. Assimilation efficiency was set at 15% (Table 1).

Model runs

We solved the models (either analytically for physi-
ological or population models, or numerically for the 
consumer- resource model) for a certain parameter set, 
to obtain dynamics of state variables, which were then 
used to calculate stressor interaction statistics (next sec-
tion). We ran four scenarios (Figure 1 –  blue panels) to 
explore how seagrass biomass changes through time 
under different combinations of stressor magnitude. We 
assumed that stressor magnitude remains constant but 
acknowledge this is rarely the case in nature (Jackson 

et al., 2021). Seagrass biomass was modelled under (i) 
optimal (control) conditions (Figure 1 –  top left blue 
box), (ii) maximum light stress (i.e. lowest light available 
for photosynthesis) but optimal temperature (Figure 1 –  
bottom left blue box), (iii) maximum temperature stress 
but optimal light (Figure 1 –  top right blue box) and (iv) 
both maximum temperature and light stress to represent 
multiple co- occurring stressors (Figure 1 –  bottom right 
blue box). We modelled responses to a suite of multiple 
stressor combinations (Figure 1 –  orange- dotted boxes) 
to calculate stressor interactions and demonstrate how 
responses at different levels of organisation can vary 
along stressor gradients that deviate from optimal con-
ditions. Starting seagrass biomass was set at 10% of Bmax 
for all model runs.

Classifying multi- stressor interactions

We defined stress as any deviation from ‘optimal’ con-
ditions that affect photosynthesis and respiration. We 
recognise that different stressor interaction statistics are 
more appropriate for capturing true interactions in dif-
ferent scenarios (sensu Folt et al., 1999). Thus, we use two 
different metrics for capturing two responses of a differ-
ent nature. First, let YA,YB,YC and YAB be the response 
variable of the treatment with stressor A only, stressor B 
only, no stressors (control –  C), and both stressors (A and 
B), respectively. To assess the stressor interaction type, 
we can define the interaction statistic ρ:

This metric, ρ assesses whether the rate of change of 
the response in the presence of both stressors is greater 
than the multiplication of the rate of change due to in-
dividual stressor effects. We classify the interaction as 
synergistic when ρ is positive, additive when ρ is zero 
and antagonistic when ρ is negative. Using this statis-
tic is natural when it is expected that stressors will af-
fect a response measured as a rate, which is the case for 
the population and consumer models because biomass 
is multiplied by a growth rate which depends on the 
stressor levels (i.e. the stressors have a multiplicative ef-
fect on the response). However, for the physiological sub- 
model, using ρ would be an unnatural choice because 
the response variable NP is clearly not affected by either 
stressor multiplicatively (this can be seen by inspection 
from Equation (4), as there is no NP on the right- hand 
side). Thus, we define a different interaction statistic, δ, 
to assess the physiological sub- model, where (with NP as 
the response variable Y):

(6)B(t) =
�Fexp(�t)

1 − �Fexp(�t)
,

(7)
dB(t)

dt
=P(I ,T )B(t)−R(T )B(t)−mB(t)

−aS(T )B(t)X (t).

(8)S(T ) = s0exp

(

− E

k(T + 273.15)

)

,

(9)
dX (t)

dt
= acS(T )X (t)B(t) − vS(T )X (t),

(10)� = − ln

(

YAB∕YC

YAYB∕Y
2
C

)

.

(11)δ = −
(((

YC −YA

)

+
(

YC −YB

))

−
(

YC −YAB

))

.
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Similarly, we classify the interaction as synergistic 
when δ is positive, additive when δ is zero, and antago-
nistic when δ is negative.

Sensitivity analysis

We tested the sensitivity of our models to a range of 
values of the parameters Tmax, Topt, RTmax, RTopt and a 
(varied one at a time), to examine changes in interaction 
type and strength. We also implemented three alterna-
tive model forms to test how functional forms of key pro-
cesses at each level of organization affected the stressor 
interaction strength and type. For the population model, 
we altered the form of density- dependence by imple-
menting a Gompertz function as an alternative to the lo-
gistic. We also re- parameterised our physiological model 
so that temperature and light affect biomass indirectly 
(parameter Pmax affecting equilibrium biomass). For the 
consumer- resource model, we implemented a Holling 
Type II functional response for the consumer feeding on 
seagrass.

RESU LTS

We found that the same processes can underpin addi-
tive, synergistic, and antagonistic stressor interactions. 

The strength and type of interaction depended mostly 
on when the interaction statistic was quantified (relative 
to time needed to reach equilibrium), the magnitude of 
stressor effects and the presence of a consumer. We dis-
cuss these findings in more detail below for each of our 
three models.

Physiological sub- model

The interaction metric δis linearly related to biomass be-
cause it is the sum of several other quantities that are lin-
early related to biomass. For fixed temperature and light 
levels, NPis linearly related to biomass with a positive 
slope (Figure 2). Slope steepness and the NP = 0intercept 
depend on temperature and light, where the intercept at 
NP = 0occurs at lower biomass levels when stressor in-
tensity is greater. Additionally, when biomass is at car-
rying capacity, net production is zero, and NP = −R(T )

. This is a finding that holds across all temperatures and 
is independent of light level.

For any combination of light and temperature, in-
teraction type was antagonistic for all biomass values 
below carrying capacity; however, interaction type re-
versed such that all interactions became synergistic for 
all stressor treatments when biomass exceeded carrying 
capacity (Figure 2). The stressor interaction type was 
approximately additive at the carrying capacity because 
NP = −R(T ). Generally, stressor interactions were an-
tagonistic when temperature deviated from the thermal 
optimum (assuming photosynthesis without shading 
exceeds respiration). However, synergistic interactions 
could occur when applying temperature ‘stressors’ 
that shift toward thermal optima or when respiration 
exceeded photosynthesis (without shading) –  which 
represents an unviable population. For stressors that re-
duced net growth, interactions were always antagonistic.

Population sub- model

Under optimal (control) conditions, biomass rapidly in-
creased while population growth was in the exponential 
phase of the logistic curve, and then slowed because of 
shading before reaching equilibrium (when net production 
is zero) at a biomass of approximately 80% of Bmax , which 
took ~25  days (Figure 3a). Under both single stressor 
scenarios (i.e. only light stress or only temperature stress 
–  blue boxes in Figure 1), population growth was slower 
compared with control conditions, the system took more 
than twice as long to reach equilibrium, and biomass sta-
bilised at approximately 60% of Bmax (Figure 3a). Finally, 
under maximal stress from two co- occurring stressors, 
population growth was drastically slower compared with 
optimal conditions, the system took more than 10 times 
longer to reach equilibrium, and biomass stabilised at ap-
proximately 25% of Bmax (Figure 3a).

F I G U R E  1  Illustration of stressor levels used for model runs. 
Blue boxes indicate model runs under optimal (control) conditions 
(Topt and Ropt in Table 1 –  top left box), under maximum light 
stress but at optimal temperature (bottom left), at maximum 
temperature stress but optimal light (top right), and under both 
maximum temperature and light stress to represent multiple co- 
occurring stressors (bottom right). Legend indicates combinations 
of temperature and light stressor intensities used in model runs to 
assess multiple stressor interactions and combinations tested in 
sensitivity analyses (results shown in the supplementary material)
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Using the multiplicative interaction metric, ρ, we 
found that for all temperature (Figure 4a) and light 
stressor scenarios (Figure 4c), the same stressors could 
interact antagonistically, additively, or synergistically 
depending on stressor magnitude, and on when the inter-
action statistic was quantified, relative to the timescale 
over which the system approached its asymptotic be-
haviour (e.g. reached equilibrium). Over short timescales 
(<25 days) –  during the exponential phase of population 
growth –  stressor interactions were generally antagonis-
tic, but over longer times- scales (>25 days), interactions 
were synergistic (Figure 4a). Additionally, the stressor in-
teraction tended to increase (i.e. trend towards synergy) 
as stressor magnitude increased (Figure 4a, c). Stressor 
interaction strength also varied through time, until the 
system reached equilibrium. At equilibrium, there were 
no antagonistic interactions, and the only approximate 
additive interaction occurred under high temperature 
stress and low light stress (yellow line in Figure 4c).

Across all scenarios, stressor interactions depended 
on the timescale at which the interaction was measured 

due to differential growth rates and shading effects 
under each stressor combination. For example, growth 
initially dominated the change in population biomass, 
as all treatments were in the exponential phase of logis-
tic growth (Figure 3a). Growth rate was highest in the 
control treatment, leading to faster growth and therefore 
proportionally higher biomass compared with stressed 
treatments. This led to antagonistic stressor interactions 
because all stressed treatments were at low biomass rel-
ative to the control (Figure 4a, c). When shading began 
to reduce growth rate in the control treatment, the single 
and combined stressor treatments remained in the expo-
nential growth phase (Figure 3a), leading to increased 
synergistic stressor interactions because the relative dif-
ference between the biomass in the single stressor treat-
ments versus the control was much lower than in the 
multiple stressor treatment versus the control (Figure 4a, 
c). In the next growth phase, the change in biomass in 
the control and the single stressor treatments was limited 
by self- shading, while the multiple stressor treatment re-
mained in the exponential phase of growth (Figure 3a). 

F I G U R E  2  The interaction metric used to assess the physiological sub- model, δ, as a function of proportion of carrying capacity achieved 
through the net production of seagrass under multiple stressor scenarios for (a) fixed light stress (200 μmol) but varied temperature stressor 
magnitude and (b) fixed temperature stress (42°C) but varied light stressor magnitude. The interaction metric δ is linearly related to biomass 
because it is the sum of several other quantities that are linearly related to biomass. Positive values of δ indicate synergistic interactions, while 
negative values indicate antagonistic responses of seagrass net production. Dashed line where δ = 0 denotes where interactions are additive. 
Dotted vertical lines are at 0% and 100% of carrying capacity. The red line represents the highest temperature and light stress combination, 
whereas the lightest yellow line represents the lowest multiple stressor combination (orange textured boxes in Figure 1)
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Thus, interactions became less synergistic over time until 
all treatments reached equilibrium, and the long- term 
stressor interaction level (i.e. all synergistic) was realised 
(Figure 4a, c).

Consumer- resource model

The consumer- resource model behaved similarly to the 
population model. Under control growth conditions, 
the consumer- resource model experienced rapid ini-
tial growth, before declining as the consumers reduced 
seagrass biomass. The consumer and resource reached 
equilibrium at ~300  days, when seagrass biomass was 
approximately 50% of Bmax (Figure 3b –  dark blue line). 
Therefore, seagrass biomass had a slower, more oscil-
latory approach to equilibrium in the presence than in 
the absence (c.f. population sub- model, Figure 3a) of a 
consumer. The presence of a single stressor reduced the 
impacts of the consumer on seagrass biomass (i.e. for a 
period of time seagrass biomass was higher in the pres-
ence of a stressor compared with control conditions). 
When either light or temperature stress were acting alone, 

seagrass and consumer coexisted and seagrass reached 
the same biomass equilibrium as under control condi-
tions, albeit more slowly (~150 days longer: Figure 3b). 
The presence of multiple stressors negated any compen-
satory effects, and seagrass growth was further slowed. 
In this case seagrass biomass was not sufficient to sup-
port a consumer, so the consumer became extinct, and 
the system approached the single- population equilib-
rium (~25% of Bmax; Figure 3b).

Using the multiplicative interaction metric, ρ, for all 
temperature (Figure 4b) and light stressor scenarios 
(Figure 4d), the same stressors could interact antago-
nistically, additively, or synergistically depending on 
stressor magnitude, consumer effects, and when the re-
sponse was measured relative to the system’s long- run 
state. As per the population model, over short times-
cales (<25  days), during the exponential growth phase, 
stressor interactions were antagonistic. After this phase, 
a similar pattern to the population model was observed, 
with the same interpretation based on growth and shad-
ing processes. However, there was an extra phase where 
the biomass of seagrass in the control and single stressor 
treatments moved above the equilibrium biomass prior 

F I G U R E  3  Temperature and light interact non- linearly to affect seagrass biomass in (a) the population sub- model, and (b) the consumer- 
resource model. Dashed line in panels represent Bmax of 667 g dry weight m– 2. Initial biomass was fixed at 10% of Bmax. Scenarios are control 
conditions (black), maximum light stress but control temperature (blue), maximum temperature stress but optimal (control) light (green) and 
both maximum temperature and maximum light stress (red). Note different durations of model runs on X axis
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to being drawn down by the consumer (Figures 4b, d and 
5a). This led to an extra synergistic peak at ~250 days, 
where the biomass in the single stressor treatments ex-
ceeded control biomass due to a higher consumer pop-
ulation in the control treatment. Unlike the population 
sub- model, over longer timescales (>25  days), multiple 
stressors could change between antagonistic, additive 
or synergistic effects in the presence of a consumer 
(Figure 4b, d). At equilibrium, under the most stressful 
conditions (red lines in Figure 4b, d), synergistic inter-
actions occurred in the long- term, while under lower 
stressor intensities we observed additive or antagonistic 
interactions in the long term (e.g., yellow and light or-
ange lines in Figure 4b, d).

Population growth trajectories (and, thus, interaction 
type and strength) also depended on initial conditions 
for both seagrass (biomass) and consumer (density) 
(Figure 5). For example, when both consumer density 
and seagrass biomass were low (Figure 5a, b –  point 1), 
the strength of the interactions (Figure 5c) were lower 
compared with when the consumer density was high rel-
ative to seagrass biomass (Point 4), thus the trajectory of 
the interaction started at a different point. Additionally, 

interaction trajectories could approach the long- term in-
teraction state in a qualitatively different way depend-
ing on the initial conditions, even when they those initial 
conditions were similar. This is because the instanta-
neous trajectories of seagrass biomass and consumer 
density differed among the treatments, which could lead 
to a fast divergence in observed biomass across treat-
ments (Figure 5a, b).

Sensitivity analysis

Variation in parameter values could alter interaction 
type or strength (SI Figures 1– 5), but our findings were 
robust to the numerous alternate model functional forms 
(SI Figures 6– 9). The magnitude of stressor interactions 
varied between models, but the overall interaction type 
remained consistent for all model runs at maximum 
stressor levels. At intermediate and low stress, some 
interaction types changed –  especially during transient 
phases (SI Figure 7) –  but the magnitude of effect was 
small (SI Figures 6– 9). This tendency for interaction type 
to fluctuate between synergistic and antagonistic was 

F I G U R E  4  Stressor interactions as a function of time for the seagrass population sub- model (a, c) and consumer- seagrass model (c, 
d) under multiple stressor scenarios. Scenarios are fixed light stress (200 μmol) but varied temperature stressor magnitude (a, b), and fixed 
temperature stress (42°C) but varied light stressor magnitude (c, d). ρ is the interaction metric, where positive values indicate synergistic 
interactions between stressors, and negative values indicate antagonistic interactions. Dashed line at zero denotes where interactions are 
additive
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especially pronounced for the Holling Type II consumer- 
resource model. Such models exhibit limit cycles for cer-
tain parameter sets, and we found that these limit cycles 
could induce persistent cycling between synergy and an-
tagonism (SI Figure 10).

DISCUSSION

Non- additivity in stressor effects should no longer be 
surprising as synergies and antagonisms are common 
in both experiments and in nature (Mantyka- Pringle 
et al., 2019; Murdoch et al., 2020). Our analyses show 
how, across multiple levels of biological organisation, 
the same ecological and physiological processes could 
underpin additive, synergistic, or antagonistic stressor 
interactions. The classification and strength of stressor 
interactions depended on when during the experiment 
the interaction was measured, the magnitude of stressor 
effects and initial conditions. For instance, at equilib-
rium and under low stressor magnitudes, antagonistic 
or additive interactions were more common but at high 
stressor magnitudes, synergies always occurred. Such 
context- dependencies suggest that seeking generalities 

in stressor responses by classifying interactions will 
often be of limited value, and could lead to ineffec-
tive or counter- productive management (Brown et al., 
2013). This highlights the importance of a mechanistic 
understanding of the processes that lead to changes in 
the biological endpoint of interest (De Laender, 2018), 
particularly when experiments do not match the spatial 
and temporal scales of relevance for management (as 
they typically do not). Our study also offers a plausible 
explanation for why previous meta- analyses of experi-
mental results have struggled to identify predictors of 
non- additive interactions in the natural environment 
(Burgess et al., 2021; Côté et al., 2016; Crain et al., 2008; 
Jackson et al., 2016), and why, when they do, those pre-
dictors are not consistent across meta- analyses.

Interaction type varied depending on when during 
the model run the response was measured, highlighting 
the challenges that need to be overcome when designing 
experimental tests of multiple stressors. Short- term re-
sponses to multiple stressors may not even qualitatively 
reflect their long- run responses (Leuzinger et al., 2011). 
Yet, most experiments on multiple stressors are con-
ducted over short timeframes where transient dynam-
ics prevail, and conclusions may be sensitive to initial 

F I G U R E  5  Phase plots under (a) no stress (= optimal, control conditions) and (b) multiple stressors in the consumer- resource model. Grey 
arrows indicate the direction of movement and relative magnitude of a particle state change. Blue lines and red lines represent the seagrass- 
nullclines and consumer- nullclines, respectively, and identify states where seagrass and the consumer are at equilibrium. Black lines represent 
the trajectories of the system, when starting from different initial conditions. Circled numbers (1– 4) indicate different initial model conditions 
and panel c shows behaviour of ρ for each set of initial conditions in panel b
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experimental conditions. For example, the median ex-
perimental duration was 3 days (range: 2– 134 days) in a 
meta- analysis of 112 studies across terrestrial, freshwa-
ter, and marine ecosystems (Darling & Côté, 2008). The 
median experiment duration was 57 days in recent work 
assessing multiple stressor effects on freshwater fish 
(Lange et al., 2018), whereas it was 30 days for seagrass 
(Ostrowski et al., 2021). Nevertheless, we acknowledge 
that shorter experimental durations are likely to be suit-
able for some response types (e.g. mortality vs. growth) 
and target organisms (e.g. those with faster generation 
times) and depending on the types of stressors being ap-
plied (e.g. pulse vs. press –  Jackson et al., 2021).

Here, we used PBMs to consider different interac-
tion types during transient phases before the system’s 
asymptotic state was reached. To facilitate interpreta-
tion of shifts in stressor interaction type, we focused on 
responses in deterministic systems with a fixed equilib-
rium (but see SI Figure 10). However, we recognize that 
ecological systems are rarely at equilibrium (Burton 
et al., 2020; Hastings et al., 2018) for several reasons: fluc-
tuations in model parameters with environmental vari-
ability often imply that the theoretical equilibrium state 
is itself constantly fluctuating, and thus the system never 
settles to a fixed point; long- run behaviour of complex 
systems may involve limit cycles or chaos rather than 
approach to an equilibrium (Coulson, 2021); and long- 
run equilibrium conditions themselves may be subject 
to long- term trends as a consequence of the increasing 
magnitudes of stressor interactions. For our consumer- 
resource model, interactions could fluctuate from antag-
onistic to synergistic and back again, when the approach 
to equilibrium was oscillatory (SI Figure 3). This suggests 
that, for systems with persistent cycles or chaotic dynam-
ics, stressor interactions may well fluctuate indefinitely 
from synergistic to antagonistic as relative abundances 
of interacting populations change, as we observed for the 
Holling Type II consumer- resource model (SI Figure 10). 
Similarly, systems with stochastic fluctuations in param-
eter values, which appear approximately additive on av-
erage, may also fluctuate between different interaction 
types.

More broadly, process models provide important ad-
vantages over phenomenological models usually used 
to analyse data, particularly when such models are in-
tegrated with empirical data (Connolly et al., 2017). For 
example, the parameters in process models (see Table 1) 
can be estimated independently of the data collected in 
a multi- stressor experiment, and thus be used to pre-
dict system dynamics, whereas phenomenological mod-
els typically can only describe dynamics after the fact. 
Indeed, because PBMs represent a hypothesized causal 
structure of a system, they can be used to predict sys-
tem behaviour under novel conditions (e.g. novel com-
binations of stressors or stressor magnitudes –  Côté 
et al., 2016). When used naively, however, incorrect un-
derlying assumptions can lead to flawed conclusions 

(Pirotta et al., 2022). We acknowledge that our models 
made several assumptions (i.e. no photo- inhibition at 
high irradiance) and omitted some processes that could 
be important in seagrass systems. Consequently, model 
results may not reflect realistic multiple stressor impacts 
for seagrass systems in nature. However, this highlights 
the importance of confronting the predictions of process 
models with empirical data, because when such predic-
tions fail, they imply that the hypothesized mechanistic 
structure of the system that the model represents is inad-
equate. Such insights can inform the formulation of new 
models, and thereby enhance the system understanding.

Our results also support calls for more experimen-
tal evidence to characterise the functional relationships 
between stressors and response variables (Pirotta et al., 
2022; Schäfer & Piggott, 2018). This requires experi-
ments with treatments across gradients of stress –  rather 
than in just two levels –  to more accurately identify the 
processes that underpin how stressors interact (Jackson 
et al., 2021; Pirotta et al., 2022) and to predict the eco-
logical outcomes of multiple stressors in natural ecosys-
tems (also see Galic et al., 2018). Currently, most multiple 
stressor studies apply stressors at only two levels (exclud-
ing controls; Ostrowski et al., 2021). Our findings high-
light the need to move away from short- term experiments 
testing very few levels of stressors, and echo recent the-
oretical work suggesting that care must be taken when 
attributing interaction types because the combination of 
stressor, model parameters impacted and stressor magni-
tude can affect the interaction type (Haller- Bull & Bode, 
2019). Although our model makes several assumptions 
(SI Table 1) that could alter the magnitude of change in 
our response variables under natural conditions, the key 
finding –  that interaction type varies with timeframes 
and stressor magnitudes –  remains a clear conclusion.

Our inclusion of a consumer- resource model sup-
ports recent calls for research examining interactions 
at higher levels of biological organisation (Orr et al., 
2020), supporting previous work demonstrating that 
species interactions can change stressor interaction 
types (Beauchesne et al., 2021; Thompson et al., 2018). 
Indeed, species interactions can amplify or dampen 
the sensitivity of natural systems to stressors. For in-
stance, in seagrass ecosystems consumer presence 
mitigated seagrass losses from temperature stress and 
high nutrients by reducing epibiont biomass (Brodeur 
et al., 2015). Species interactions add further complex-
ity when assessing multiple stressor effects and must be 
considered in future work. The inclusion of such spe-
cies interactions in experiments, models and theoretical 
frameworks will lead to a more accurate and holistic 
understanding of stressor interactions and realistic 
impacts to ecosystems, although we acknowledge the 
logistical and financial constraints associated with con-
ducting such experimental studies.

We found strong evidence that the same stressor in-
teraction can vary from antagonistic, to additive, to 
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synergistic depending on the response variables ex-
amined and the time frame over which responses are 
measured. We find some evidence that under higher 
stress, interactions may tend more towards synergy as 
systems approach equilibrium. Our findings highlight 
the need to understand how context affects the impact 
of multiple stressors more broadly, for example, due 
to the temporal dynamics of stressors (Jackson et al., 
2021). Ecosystem conservation and effective manage-
ment of multiple stressors requires greater integration 
of process modelling, laboratory studies and field data. 
Calibrating PBMs and then generating predictions that 
can be tested against data under controlled laboratory 
or field conditions can yield richer insights than either 
approach alone, as discrepancies can identify gaps in 
our understanding of the causal relationships among 
stressors and responses. Field experiments can further 
tell us how well the mathematical models approximate 
the dynamics of natural systems or if there may be addi-
tional factors whose incorporation may be required to 
draw inferences that are actionable in real- world con-
servation and management contexts (Burd & Dunton, 
2001). For continued progress in multiple stressor re-
search, it is imperative to better leverage process- based 
approaches and to maximize what we can learn from 
them by more comprehensively integrating them with 
experimental research.
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